

IBM Research

Class 5: Tracking 2

Andrew Senior

aws@andrewsenior.com http://www.andrewsenior.com/technical

© 2008 IBM Corporation

=		= =
	2.5	
<u> </u>	<u></u>	
		= 7 =

Further tracking

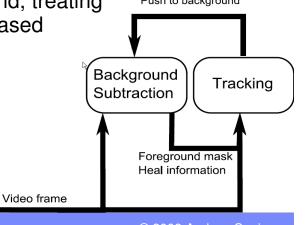
- Interaction of tracking and background subtraction
- Multi-cue FG/snake/head tracker
- 3D tracking
- Condensation
- Articulated body tracker
- Mean-Shift tracker (Histogram techniques)
- Tracking in crowds
- Tracker-based alerts

Tracking difficulties

- Many other tracking problems:
 - Fragmentation- BGS often fails. An object becomes two regions
 - new fragments are absorbed into nearby tracks untils split by fission
 - "Fusion" class accumulates evidence for nearby objects merging
 - Two objects may enter together and be indistinguishable until later
 - "Fission" class accumulates evidence for splitting object
 - One object leaves as another enters
 - Detect "Relay" tracks
 - One object occludes another for a long period
 - Objects stop and are "learned" by the background model
 - Tracker control over the BGS inhibits adaptation of tracked objects
 - Tracker forces push/pop to background model for truly static objects

Interaction of tracking and background subtraction

- Often constructed as a modular, feed-forward system
 - Simpler analysis
- Tracking can inform background subtraction
- Object detection
 - BGS is a one-class classification problem
 - With a known object, 2-class classification should be easier
 - Choose ML class of pixel among BG & predicted FG- to give more accurate boundary
- Tracker "understands" "objects"
 - Knows that an object is stopped or moving
 - Tracker can control when objects become part of background, treating them as unitary regions, whereas BGS must rely on pixel-based methods or region heuristics.
 - Inhibit adaptation for verified, temporarily-stopped objects
 - Push known stopped objects into BG

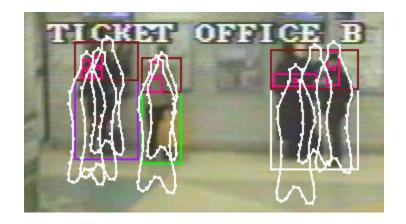


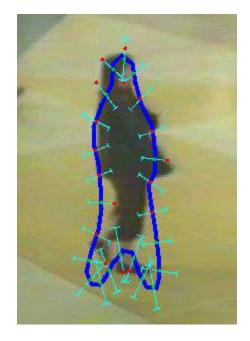
Track Sources and Sinks

- Hand mark / learn where objects appear and disappear (see behaviour analysis class)
 - Stauffer "Estimating Sources and Sinks"
- Information can be used to distinguish between noise and true observations
 - A new object shouldn't appear except at a source
 - Objects reaching a sink are likely to disappear

Siebel's "Reading" tracker

- Based on Baumberg 1995 (Leeds tracker)
- Extended by Siebel 2002
- Detection by BGS
- Tracking of regions
- Modelling people by snakes
 - Size based on calibration
 - Hypotheses based on head&shoulders (cf W4)

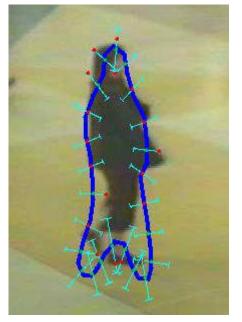


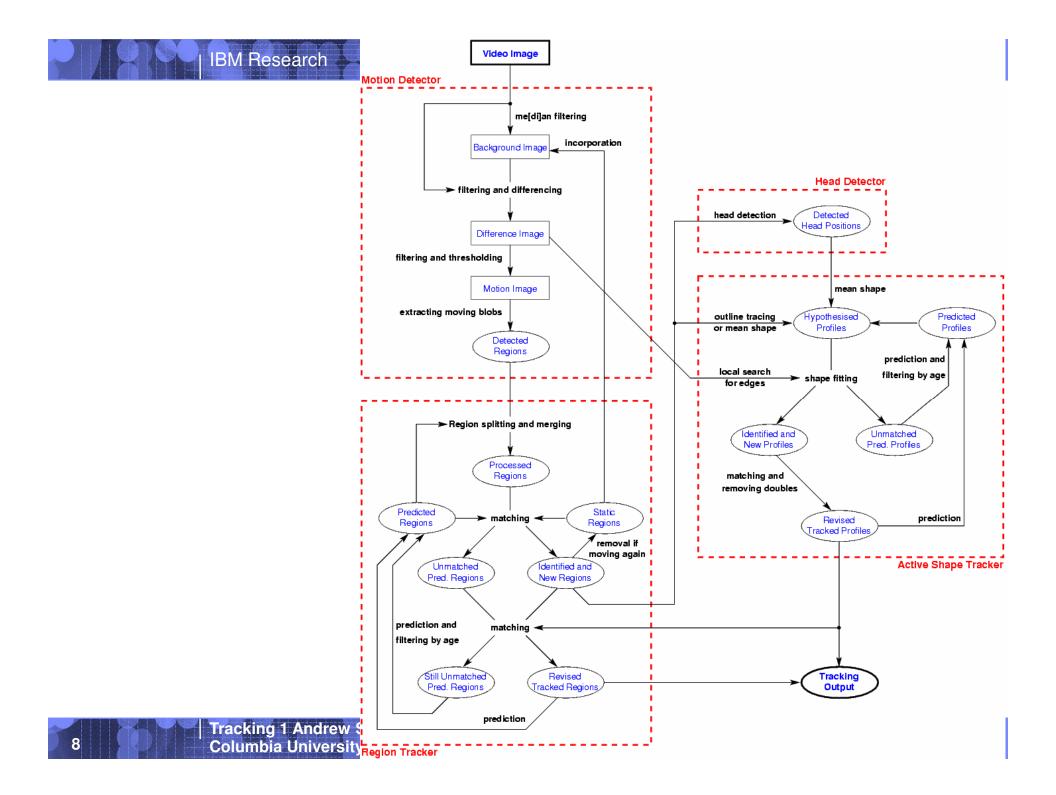


_	<u> </u>	
Ξ.		TAF
		=7=

Snakes (Active Shapes)– a common model-based tracking approach

- Mark outline of training set of objects
 - Database of pedestrian silhouettes
- Fit curves e.g. B-Spline to contour
- Control points of splines concatenated into a vector x
- Find mean and Covariance matrix S of {x}
 - Hence find principal components {v_i}
- Track shape
 - At sample points on contour, find edge in perpendicular search direction
 - Find control point displacement to fit edge displacements
 - Project into principal components to ensure fit to model.
- Result- shape that matches observed contour, while still similar to training set exemplars





IBM Research

Tracking for seminar understanding The "CHIL" project

© 2008 IBM Corporation

	= =

Tracking for seminar understanding

- CHIL (Computers in the Human Interaction Loop) project:
 - EU 6th Framework consortium for mining seminar data
 - Similar to AMI (focusing on "meeting mining". Now AMIDA)
- Understand speech and participant actions
 - For indexing, summarization, live status
- Speaker location important for
 - Role & activity understanding
 - Steering of resources
 - Microphone arrays: for improved speaker ID, speech reco
 - PTZ cameras: For face reco, gesture, AV speech
- Goal: Joint Audio-Visual tracking

		= =
<u> </u>	<u> </u>	

CHIL data- speaker head location

Tracking 1 Andrew Senior Columbia University E6998-007 Automatic Video Surveillance

© 2008 Andrew Senior

=	
<u> </u>	

2D Tracking

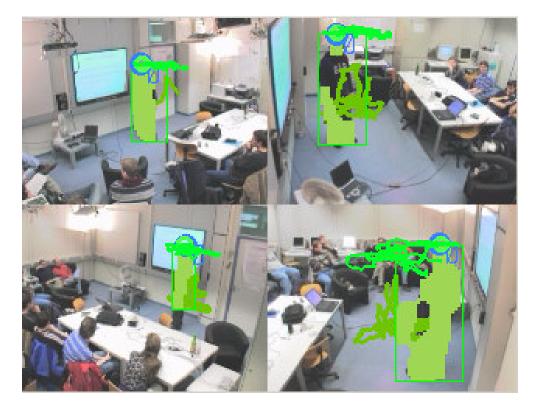
12

- Track independently in each 2D camera view using IBM Smart Surveillance engine
 - Tracking through occlusions using probabilistic appearance models.
 - Relies on adaptive background subtraction
 - Background initialized from automatic backgrounds from ground truth sequences
 - Use "region of uninterest" to mask out non-speaker foreground areas in each camera (roughly estimated)
 - At 320x240, 4 cameras

_	_	
Ξ.		
	_	

3D Localization

- Triangulate "top of head" positions
 - y=upper row of object model bounding box
 - x=centroid of uppermost pixels
 - Each detection in a 2D image specifies a 3D ray.
 - Hypothesize closest approach of ray pairs as head locations



=		= =
<u> </u>	<u></u>	
_		

3D Tracking

- Use Viterbi search through 3D triangulation points
 - Beam search (50 candidates)
 - Find least distance path through 3D points
 - Extra penalties (start, end and skipped frames)
- Assumes exactly one "speaker"
 - No speaker location prior
 - Does not exploit 2D tracking
 - Points are sparse- linear interpolation for comparison to ground truth
- Speed
 - C++, 4 cameras ~27fps on 3.0GHz machine
 - ~Linear in #pixels

=	 = =
<u> </u>	ETE.

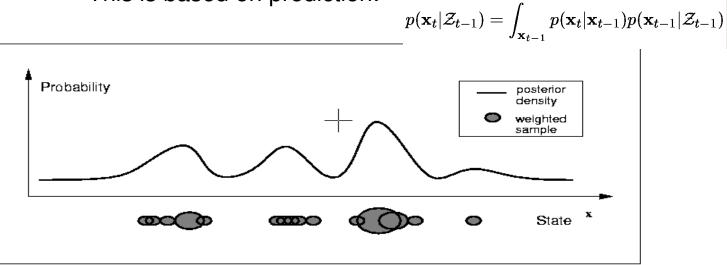
Condensation based tracking: Particle filtering

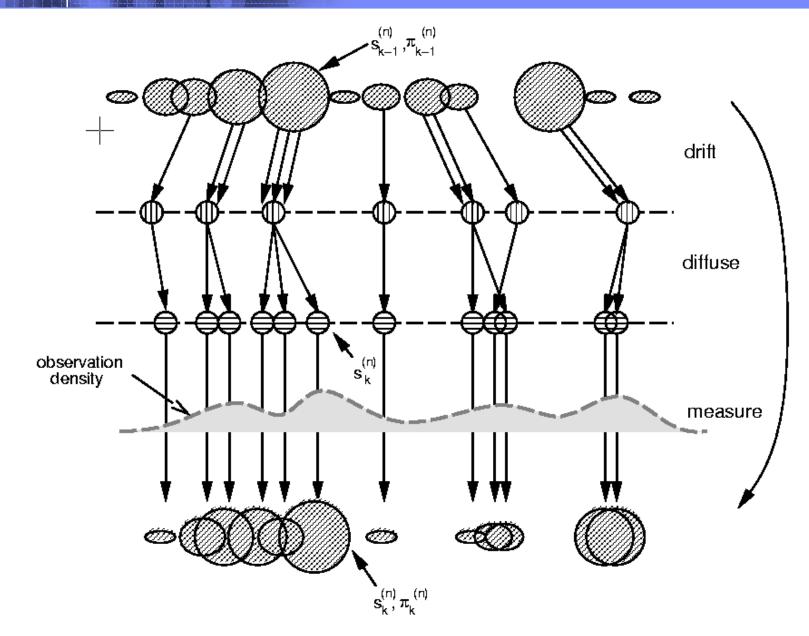
- Particle filter models multiple hypotheses as "particles"
 - Particles represent parameters of a hypothesis and are weighted with prior of the hypothesis
 - At each iteration particles are propagated / perturbed
 - Tracking, possibly random variation
 - Evaluate particles to determine their relative likelihood
 - Resample the particles by weight to give new distribution
- Need hundreds of particles for even a few dimensions ~5
- Curse of dimensionality: more dimensions means many more particles
- Scoring/fitting have to be fast or very effective for so many hypotheses

Condensation

16

- Bayes rule, on state x and observations z:
 - p(x|z) = k p(z|x)p(x)
- Particles are sampled according to the prior p(x)
- Reweighted according to the evidence p(z|x)
 - Results in a distribution p(x|z) (after normalization)
- Iterate for subsequent frames using $p(x_{t-1}|z_{t-1}...,z_1)$ instead of p(x)
- This is based on prediction:

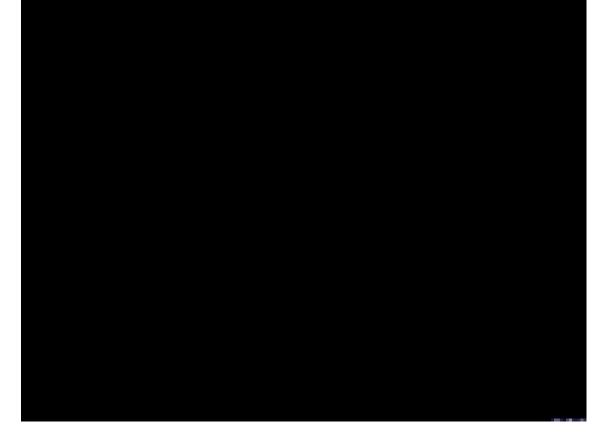




17

=		
T	12.57	
<u> </u>		
		= 7 =

Condensation



- Representative value?
 - Mode? Weighted mean?
- Tracking over time?
- Surveillance example

=		= =
<u> </u>	<u></u>	
		= 7 =

Particle Filter CHIL Tracker

- Inspired by Nickel et al.
- Particles are speaker location hypotheses in 2D space
- Particles reweighted according to image evidence: based on image differencing

Fast evaluation

Avoid background subtraction.

Find mode & resample particles

| IBM Research

Particle Filter Tracking

Hypothesis locations in green (height is weight) Red rectangle is (cylindrical) object position projection

20

© 2008 Andrew Senior

Particle scoring

- At each hypothesis project vertical edges of cylindrical object into each view.
- Evaluate particle according to sum of weighted frame difference around object edges.
- Optionally, apply face detector (slow)

$$\omega(p) = \sum_{v} \sum_{x} \delta I(x) w_p(x)$$

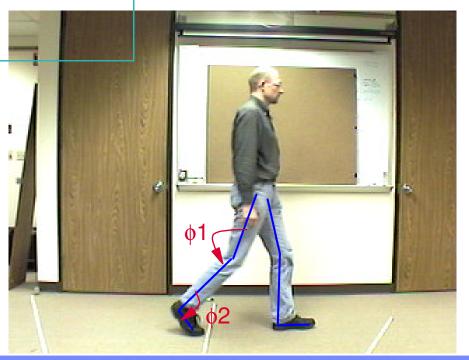
21

Object edges and weight mask for right edge, with face search region

Body Pose: Articulated Human Body Tracking

- Track articulations of human body, in real time
 - Track legs for gait analysis
 - Track arms/head for human-computer interaction
 - Gesture recognition
 - Gaze direction
- Iterative fitting of a 3D model

22

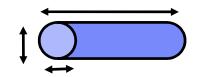


Model

- Up to 14 element model of generalized cylinders and ellipsoids
 - Coded in OpenGL- renderable as an image with limb labels.
 - Joints parametrized as twists in a kinematic chain
- Parameters

θ

- Static: joint lengths, diameters, limits
- Dynamic: joint angles



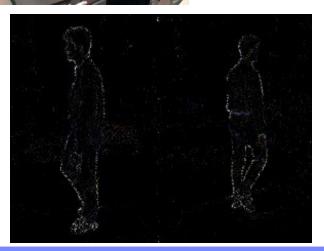
Most dynamic parameters are held fixed to limit number of free variables.

=	 =
E	
<u> </u>	 E.

Features

- Silhouette features
 - Extract silhouette of moving objects using background subtraction
 - Provided with CMUMobo data
 - Otherwise calculated with an adaptive version of the Horprasert algorithm
 - Multi-object edges lost without pixel-level segmentation

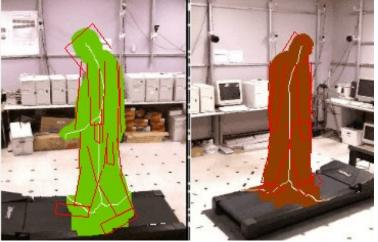
- Edge features
 - Calculated edges (Sobel operator) and difference with a background edge map
 - Sign of edges unknown
 - Internal edges



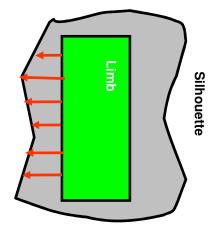
Fitting (After Bregler & Malik, Drummond & Cipolla)

- Generate model occluding contour in each view
- Project model into each view using current parameters <u>θ</u>

IBM Research



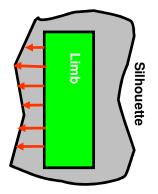
- For each contour element, search perpendicular for matching silhouette edge
- Gives many local displacements dx,dy
 - Even currently occluded edges might become disoccluded
- Bregler & Malik used area textures (LK tracker)
- Drummond & Cipolla used image edges
- Framework supports all three simultaneously

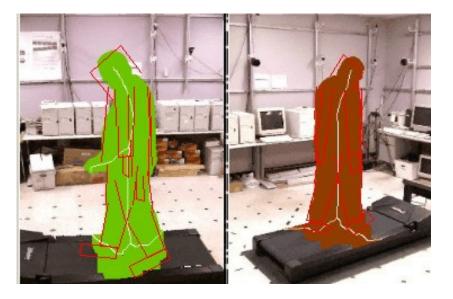


© 2008 Andrew Senior

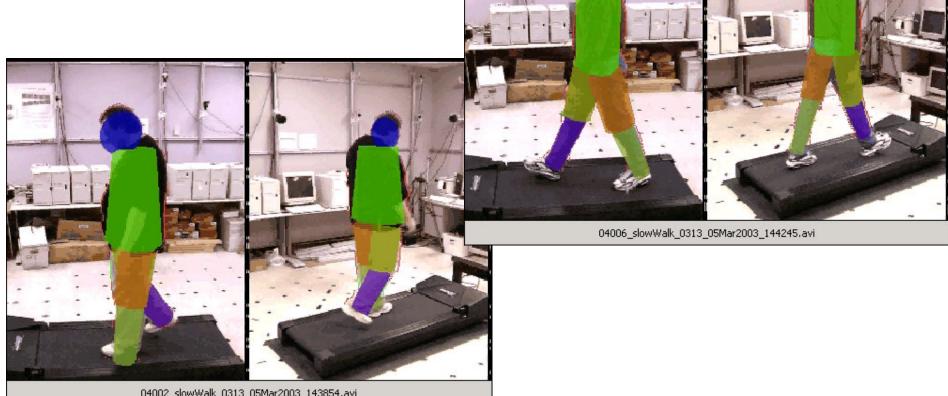
Fitting

- Generate an equation in parameter changes d<u>θ</u> to produce desired displacement dx, dy
 - Twist formulation for kinematic chain gives dx, dy in terms of d θ : $H_x.d\theta + dx = 0$
- Simultaneously solve all equations with nonlinear least squares.
 - After one iteration recompute edge correspondances
 - Iterate coarse-to-fine
- Apply penalty terms when joint angles go out of bounds.





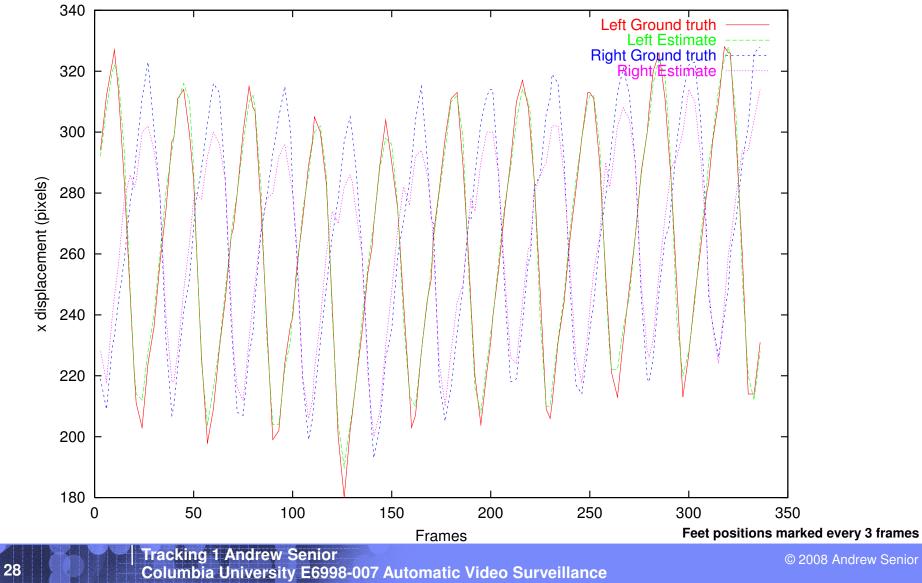
Articulated body tracking



04002_slowWalk_0313_05Mar2003_143854.avi

© 2008 Andrew Senior

Tracking Left & Right feet



=	
<u> </u>	

Speed

29

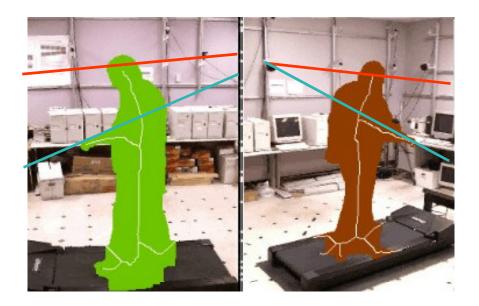
Views	Iterations	Time (ms)
2	3	31
3	3	38
4	2	33
4	3	44
4	5	62

- Video is 30 fps (33ms/frame)Dual 2.8GHz Pentium
- Ambiguity deweighting contributes 10%

_	
	= 7 = 1

Initialization

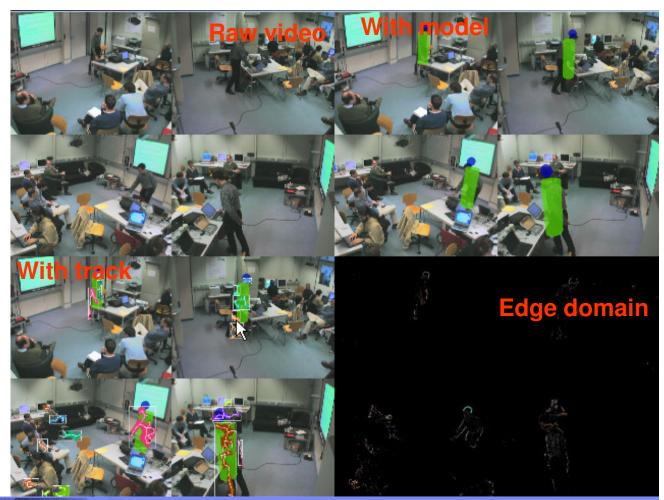
- Triangulate skeleton end points using epipolar constraint
- Retain consistent hypotheses
- Simple heuristics to label candidate hands, feet, head in "simple" poses
- Displacements of identified points fit into optimization framework, solving inverse kinematics



	<u> </u>		
Ξ.		_ HT H	

Applied to CHIL scenario: Edge alignment tracker

- Articulated body tracker applied with a rigid model
- Edge domain background subtraction
- Align 3D projected model edges with image edges



=	 = =
<u> </u>	

Fitting edge model

- Cylinder-only model with found edges
- Search perpendicular to model to find edges
- Project image displacements into model coordinates & optimize "pose" (here only 2 dof)



-		= =
		BE
	-	
		=:=

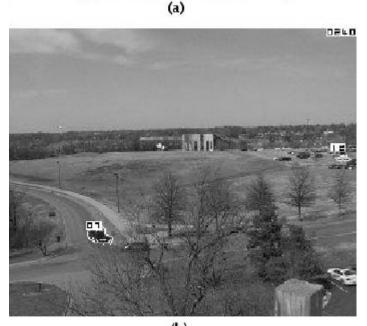
Bayesian Multiple Target Tracker Narayana & Haverkamp CVPR 2007

- Bayesian model ot associate blobs with prior blobs
- (Not using track model)

IBM Research

	Blob 1	Blob 2	"lost"
Track 3	0.00	0.10	0.90
Track 7	0.00	1.00	0.00
Track 11	0.00	0.39	0.61
Track 12	1.00	0.00	0.00

Bayes belief matrix - frame 0240



(b) Fig. 2. (a) Belief matrix (b) Tracks resulting from Belief matrix for frame 240 of video sequence

Mean Shift Tracking

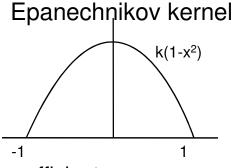
- Comaniciu & Meer
 - Use histogram gradients to track objects
- Given initialization ellipse
 - Compute kernel-weighted histogram q_u
 - Compute displacement of model to maximize Bhattacharrya coefficient

•
$$\rho = \sum_{i} (p_i q_i)^{0.5}$$

•
$$y = \sum_{j} x_j w_j g(||y-x||^2) \sum_{j} w_j g(||y-x||^2)$$

- Simple scale search- try +/- 10% and see which fits best
- 32x32x32 bin histograms 30fps on 600MHz PC
- Contains no spatial information

34



=	
E	
-	<u> </u>

Mean Shift

Bhattacharyya coefficient over a region of convergence

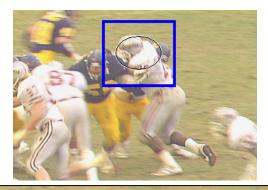
0.9

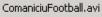
Coefficient

Bhattacharyya C

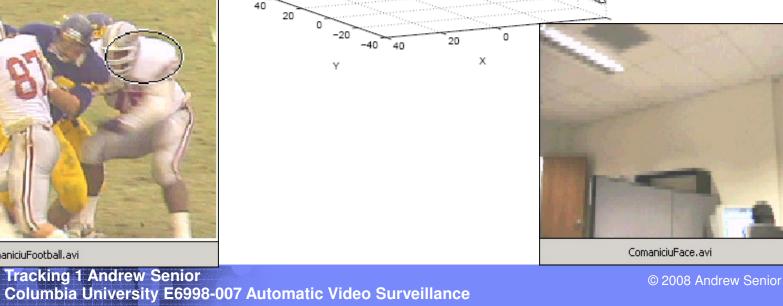
0.3

0.2





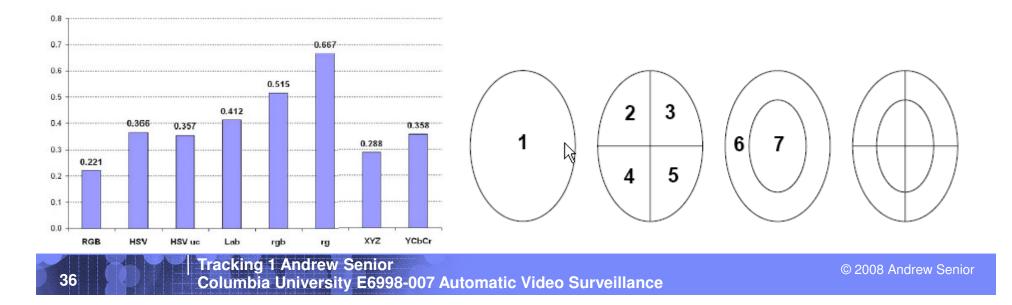
35



Initial location Convergence point

Mean shift

- Widely used, various enhancements
 - e.g. Scale (Collins)
- Multipart e.g. Maggio & Cavallaro
 - Compare colour spaces (RGB works best)



=	 = =
<u> </u>	
	 = 7 =

Variable Bandwidth Density-Based Fusion VBDF (Comaniciu '03)

=	_	= =
<u> </u>		

JPDAF

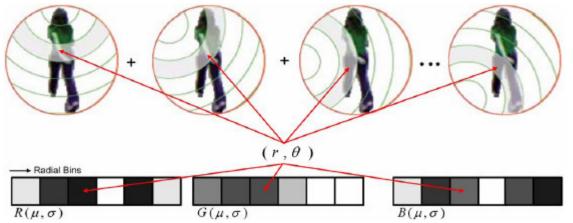
38

- Joint Probability Data Association Filter
 - Bar-Shalom & Fortmann Tracking and Data Association 1988
- Hager & Rasmussen 98
- Tracking a single object using
- Multiple observations

(b)

Kang et al. Tracking people in crowded scenes

- Kalman filter for predicting position (constant velocity) in both image and ground plane
 - Using calibration
- Mean colour (RGB) representation in each annulus bin around 8 control points
 - Comparison by cross correlation
- Maximize joint probability motion & colour
 - Joint Probability Data Association Filter
- Foreground blobs based on BGS



=		= =
		1 7.55
<u> </u>	<u></u>	
		= 7 = 1

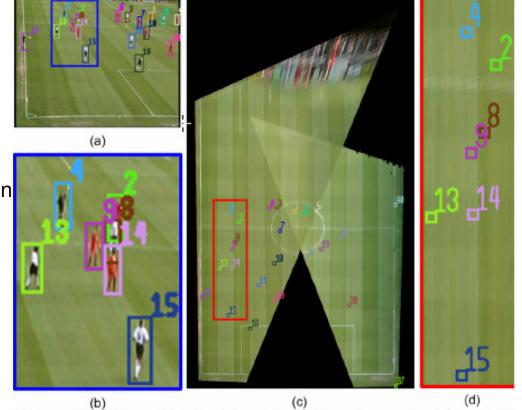


Figure 3. Using 3D for disambiguating cluttered objects. (a) The original frame, (b) Zoom of the most crowded region in the original frame (blue box), (c) The top-down view of the original registered frames, (d) Zoom of the corresponding crowded region from the top-down view (red box).

- Independent tracking of all objects
- 1 fps

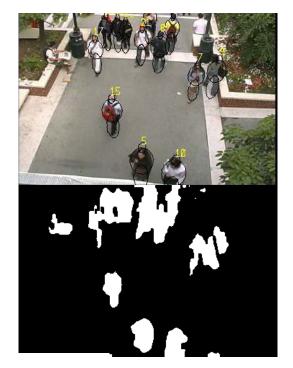
40

- Does not deal with splits & merges
 - seems to require clean initialization

	<u> </u>	= =
<u> </u>	<u></u>	
		= : =

Tracking in crowds

- Use model and calibration for dense scenes
 - Head + Torso + Legs as 3 ellipses
 - Parameterized by 2D head position and height (implying ground plane location) plus thickness and inclination
- Kalman filters for prediction
- Uses sources and sinks
- Image match for a given hypothesis
 - Background exclusion and object attraction



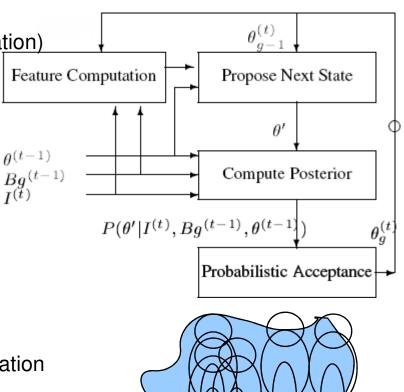
$$P(I^{S_i}|\mathbf{m}_i) \propto \exp\{\underbrace{-\lambda_b|S_i|B(\mathbf{p}_i, \mathbf{d}_i)}_{(1)} + \underbrace{\lambda_f|S_i|B(\mathbf{p}_i, \mathbf{\tilde{p}}_i)}_{(2)}\}$$

- Mean-shift formulation to predict new location
- Multiple-hypotheses explained with Markov-Chain Monte Carlo

=	
<u> </u>	

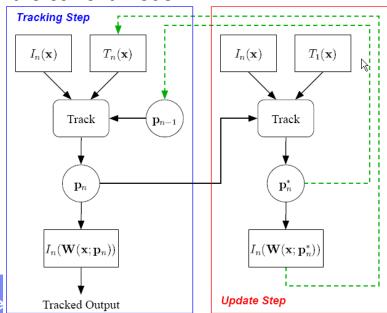
Markov Chain Monte Carlo

- Current compound state θ
 - (contains all people and locations, together with track history)
- Propose θ' by modifying θ
 - 0.1 Add person (in a sensibly sampled location)
 - Ω head & shoulder curves
 - Unexplained foreground regions
 - 0.1 Remove a person (uniformly)
 - 0.1 Establish correspondence
 - Between new object & dead object
 - 0.1 Break correspondence
 - 0.1 Exchange identity
 - 0.5 Update parameters
 - By mean shift
 - By moving head to head candidate location
- 300 iterations per frame
 - (1000 iterations on isolated frames without history)



Model update problem

- Tracking by fitting model
 - But object appearance changes
 - Lighting, pose, expression, as well as scale, orientation, location
- Constrain by using a general model of class (e.g. Faces, cars)
- Update model
 - Risk of updating model to include tracking errors (drift onto background, other objects
- "The Template Update Problem" Matthews, Ishikawa, Baker PAMI 2004
 - Maintain the original template and align that with the current model
 - Helps to avoid losing track



Tracking-based alert detection

- Simple rules on behaviour w.r.t. Geometric primitives
 - Direction of motion
 - Tripwire
 - Region

=	 = =
<u> </u>	
	 = 7 =

Tripwire

T		
_	_	

Tripwires

T		
_	_	

Directional Motion

IEM			
	T	-	
			-
	_	_	

References

48

- Fusion of Multiple Tracking Algorithms for Robust People Tracking Nils T Siebel and Steve Maybank ECCV 2002
- Real-Time Tracking of Non-Rigid Objects using Mean Shift (2000) Comaniciu, Ramesh and Meer
- <u>http://www.robots.ox.ac.uk/~ab/abstracts/ijcv98.html</u> CONDENSATION -conditional density propagation for visual tracking Michael Isard and Andrew Blake Int. J. Computer Vision, 29, 1, 5--28, (1998)
- A Bayesian algorithm for tracking multiple moving objects in outdoor surveillance video Manjunath Narayana Donna Haverkamp CVPR 2007
- Joint probabilistic techniques for tracking multi-part objects Christopher Rasmussen, Gregory D. Hager CVPR 1998
- Tracking Multiple Humans in Crowded Environment Tao Zhao Ram Nevatia CVPR 2004
- MULTI-PART TARGET REPRESENTATION FOR COLOR TRACKING Emilio Maggio and Andrea Cavallaro ICIP 2005