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Overview

� Why tracking?
� 2D Tracking

� Tracking types

� Tracking by data association

– Occlusions
– Fragmentation

Tracking 1 Andrew Senior  
Columbia University E6998-007 Automatic Video Surveillance

© 2008 IBM Corporation
2

– Fragmentation

� Model update

– Localisation
� Conclusions
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What is tracking?

� Locating an object over time

� Tracking has a long history e.g. in radar
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Why tracking?

� BGS is sufficient to detect moving objects
� BGS contains no temporal information, results are generated for every frame.  

– lots of data
� Sufficient for detection of motion 

– For video compression
– e.g. alerts for perimeter protection

� Need “higher level” information for search
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� Need “higher level” information for search
� Tracking associates multiple observations of an object and treats them as a 

unitary whole. 
� Representation & visualisation

� Search

� Behavioural understanding & alert triggering

– speed, trajectory
� Compression
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Trajectories
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Track-based interface
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Smart Surveillance Engine
Video

Object

Tracking

Moving

Object

Detection

Objects
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Video: (Object: (Class,Activity))

Tracks
Object

Classification

Class

Person

Vehicle Group
Activity

Labeling

Activity

Entering
Exiting Entering
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Tracking types

� Clustering contour features
� FG blob assignment

� Assignment problem

� Splits, merges, occlusions

� Occlusion bridging
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� Tracking through occlusions

– Appearance models
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Tracking by clustering contour features

� Pingali et al. 98 Tracking tennis players and people in stores
� Uses simple frame differencing (no background model) with 

morphology to join regions.
� Find curvature extrema on countours
� Match features with distance measure
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� Weighting location, angle, curvature

� Features that move similarly over a 
period are grouped into clusters

Features (black) & cluster trajectories (grey)
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Tracking foreground regions

� 2D Tracking associates foreground 
regions to form tracks

� An Assignment problem

Foreground objects in current frame
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Tracks from previous frame
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BGS Masks

� All “foreground” pixels in each frame

1 2 3
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Association by proximity

1 2 3
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� Associate foreground regions with current tracked objects
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Object-track association

� Association metric choice:
� Proximity of centroids

– very dependent on object scale

� Overlap

– Can fail with BGS dropout / fast objects 

� Boundary distance
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– Expensive to calculate

� Bounding box distance

� Bounding box to centroid
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Track-object association

� Compute matrix of object-track distances

0 50 100 90 74 12

60 60 20 2 120 15

60 60 20 2 120 15

Tracks

Foreground regions
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� Threshold to keep matches

60 60 20 2 120 15

58 85 49 49 47 0

12 0 0 67 26 24

37 45 84 85 36 37

Tracks
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Track-object association

� Thresholded distance matrix

Tracks

Foreground regions

“ merge or occlusion”

unobserved track
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unambiguous matches

“ split”

unobserved track

new object
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Unambiguous matches

� If there is a clear correspondance between track and object
� Build up a track history by adding new observation to object

� Centroid

� Bounding box

� Mask
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� Appearance

� Velocity

� All observations are noisy

� For sparse scenes, matches may all be unambiguous (or 
fragmentation)
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Track creation / destruction

� Create track when (sufficiently) detected
� Discard short tracks as noise

� Consider track concluded when it hasn’t been observed for N frames
� N depends on scene and algorithm- false negative characteristics
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Prediction

� The history can be used to predict the object’s location
� Predicted location should give smaller, less ambiguous distances 

� First order model (constant velocity) using smoothed velocity history
� xt+1=xt+v.� t

� Higher order models unlikely to fit motion better. Don’t account for 
“innovation”, particularly in noisy data
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“innovation”, particularly in noisy data
� Kalman filter can be used for prediction

� Stauffer & Grimson 

� Learned behaviour might also make predictions
� Known turns, decelerations etc. 
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Prediction

� Displacement of an object is inversely proportional to frame rate
� At sufficiently high frame rates (depends on object speed and 

dimensions), object will overlap with its previous location
� e.g. 400mm wide person at 30fps will overlap at speeds <12m/s 

(27mph)

� 5m vehicle at 15fps will overlap at speeds <75m/s (168mph)
� Opinion
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� Opinion
� prediction isn’t so important- it will only disambiguate targets if they are 

likely to occlude one another anyway

� Tracking becomes easier (and faster) at high frame rates so track fast 
and often

� Systems are mostly designed for live video (albeit with processing 
constraints)

� Few systems would track well on stored video at <=4fps
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Splitting
� One tracked object corresponds to multiple FG fragments

� 1) Object fragmented (BGS dropout) 

– Need to associate all fragments with same object
– Boult et al. 2001

� 2) Two objects were being tracked as one object and have separated

– Need to create new object(s) 
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Tracks

Foreground regions

“ split”
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Splitting

� Need to distinguish type 1 & type 2 motions
� Accumulate evidence in “fission” data structure
� e.g. measure relative positions of blobs, separation, velocities

� Consistently separating motion indicates type 2

� Unsustained fragmentation, random motion (different fragmentation) or 
similar motion indicate BGS failures

Tracking 1 Andrew Senior  
Columbia University E6998-007 Automatic Video Surveillance

© 2008 IBM Corporation
21

similar motion indicate BGS failures

� Wait until evidence accumulates before splitting object
� Representation? 

– Need to infer the motion of the two objects now we know there are 
two

– Copy trajectory
– Copy trajectory with shift (assuming one was always offset)
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PETS 2002 tracking in shopping mall
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Stauffer & Grimson

� Hypothesize object based on pairs of components from consecutive 
frames

� Prediction by Kalman filter
� Probabilistic assignment of FG regions to tracks
� Does not attempt to track through occlusions
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Boult et al. “Into the woods” 
led to “Guardian Solutions” surveillance product

� Tracking snipers
� Uses Thresholding with hysteresis on background differences
� Analysis with Quasi-

Connected components
� Tracking seems to be by 

simple overlap
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Quasi-Connected Components

above high threshold TH

Pixels above  low threshold TL

� � �� � � � � �� � �� � � � � �

� � �� 	 	� � �� 	 	

� � �� 
� � �� 


� � �� � � � 
 	� � �� � � � 
 	

� � �
 � ���� � � 
� � �
 � ���� � � 


� � � � �T.E. Boult’s   Surveillance Tutorial at CVPR05 Slide 25
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Occlusions

� Two or more tracked objects overlap. 
� Trivial association no longer works- 2 or more objects correspond to 

one or more FG regions. 
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Tracks

Foreground regions

“ merge/occlusion”
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Occlusion bridging

� Simple approach to dealing with occlusions
� Track the occlusion as a new object

� When the object splits, try to work out correspondence

– A==C or A==D?
– use features e.g. appearance, trajectory, size shape etc.

A

C

D
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� Graph structure

� Problems:
� multiple occlusions

� Lighting or appearance changes during occlusion

� Fragmentation, merges & splits during occlusion

A

B
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Similarity metrics

� Most common probably histogram intersection
� Find histograms HA, HB of A & B at every frame 
� Store previous values when entering an occlusion

� When objects leave occlusion calculate histograms of C &D
� Calculate similarity s(HA, HC)=sumi(min(HA[i], Hc[i]))
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� Calculate similarity s(HA, HC)=sumi(min(HA[i], Hc[i]))
� 0<= s(HA, HC) <=1

� Choose assignment according to sign of 
� s(HA, HC)+s(HB, HD)-s(HA, HD)-s(HB, HC)

� <0  => A==D, B==C

� >0 => A==C & B==D

� Other histogram distances (Euclidean, cross …)
� Multiple histograms to account for spatial distribution
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Merging

� When two objects move together consistently, then perhaps they’re 
the same object. 

� e.g. a person’s head and foot enter the scene first and are detected 
as two well-separated FG blobs
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as two well-separated FG blobs
� Solution

� detect consistent motion of distinctly tracked objects in a “Fusion” data 
structure and detect consistency- e.g. scaled variance in separation of 
centroids, maximum distance between objects. 
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Object modelling
� Improve tracking by modelling the object
� Use model to improve localization & track through occlusions
� e.g. W4 Haritaoglu et al.

� Grey-scale only

� Prediction using second order model (constant acceleration)

� Assignment with overlapping regions

� Align model median pixel with FG region median pixel
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� Align model median pixel with FG region median pixel

– Then find maximum correlation of model/FG silhouette

� Occlusions tracked separately, then bridged

� Does handle true / false splitting
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W4 : Occlusion Bridging
� Temporal texture template

� Update over time
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Appearance models

� Model foreground regions with an appearance 
model+probability mask

P t M tc RGB( , ), ( , )x x  

Tracking 1 Andrew Senior  
Columbia University E6998-007 Automatic Video Surveillance

© 2008 IBM Corporation
32

� Update each by blending:

� Trim borders when unlikely for speed/compactness
� Remove low probability pixels
� Trim low probability edge rows/columns (when object shrinks)
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Model evolution over time

� Model adapts to changes in shape, size
pose, lighting etc.

� Does blur colours
� Could use a multi-modal distribution
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� Find best fit location by searching over x
(correlation)

p I M p P PRGB c BG( , , ) ( ) ( ) ( )x x y x y x y
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Tracking 1 Andrew Senior  
Columbia University E6998-007 Automatic Video Surveillance

© 2008 IBM Corporation
34

� Bias against fitting "background"  pixels

� Coarse-to-fine search
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Occlusion Resolution

� Using 1st order model, centroid
locations are predicted

� Correlate each object's visible pixels 
with the image near the predicted 

Proceeding in depth order:
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with the image near the predicted 
position, to find MaxLikelihood location
(ignoring previously explained pixels)

� Pixels explained by model (with high likelihood) are removed
� Fit “ deeper”  models
� No penalty for fitting “ explained”  pixels
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Depth ordering

� Disputed pixels are classified using ML

� Ambiguous pixels are labelled as such

class argmax  ( ) ( ( )) ( )x I x x= i RGB c NOp p P
i i i
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� In regions of overlap, choose model that explains most pixels in the 
disputed regions

� Consider that object the frontmost, and assign all disputed pixels to it

� In successive frames, fit front-most object first.
� But recalculate depth ordering
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Appearance models for tracking
� Each pixel in foreground region must be explained
� Hypothesize: 

� predicted existing object

– including occlusion resolution

� new part of existing object

� new object
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Occlusion resolution

� Objects are ordered so that those which are assigned fewer 
disputed pixels are given greater depth. Those with few visible 
pixels are marked as occluded.

� Pixels overlapped by two objects are assigned to the frontmost 
object which overlapped them.

� Unclassified pixels (novel) are 'filled' from neighbouring 
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� Unclassified pixels (novel) are 'filled' from neighbouring 
regions, or assigned to the nearest object

� Simple rules for defragmentation
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Model update

� During occlusions model update is riskier
� Assignment is inaccurate
� Model drift problems – learn wrong appearance

� Reduce update, 

� Ignore some regions
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� Ignore some regions

� Turn off update altogether



IBM Research

Handling occlusions
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BGS            Initial Final
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Tracking through occlusions
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Tracking Through Occlusions II
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PETS 2002 tracking in shopping mall
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Region of uninterest

� High noise regions give many false positives
� Waving trees

� water, 

� flashing lights

� CRT displays
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� areas where perspective displays many small objects

� Hand marked or (ideally) learned
� Reduce false positive detections and consequent tracking errors by 

masking out misleading areas
� Tracking needs to know where these regions are – lost tracking or 

missed observations



IBM Research

Foreground occlusion model

� Foreground objects may be occluded by pixels 
in the "background model"

� Reflections, window text, window frame
� Results in erosion and poor fitting of foreground 
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� Results in erosion and poor fitting of foreground 
models

� Learn the areas where this happens

True background

Foreground occluding
"background" regions

Foreground objects
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Foreground occlusion model

� Whenever a pixel is classified as background but 
is overlapped by a foreground object, increment 
its likelihood of being " foreground occluding"

� Probability mask update is now:
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Use the foreground occlusion model

� Discount observation failures at known foreground occlusions
� Don’t reduce probability

� Record track disappearance when it enters FGO regions
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Baumberg “ADVISOR” tracker

� Baumberg 1995
� Detection by BGS. 
� Modelling people by snakes
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Track Sources and Sinks

� Hand mark / learn where objects appear and 
disappear (see behaviour analysis class) 

� Stauffer “Estimating Sources and Sinks”

� Information can be used to distinguish between noise 
and true observations

� A new object shouldn’t appear except at a source
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� Objects reaching a sink are likely to disappear
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Interaction of tracking and background subtraction
� Often constructed as a modular, feed-forward system

� Simpler analysis

� Tracking can inform background subtraction
� Object detection

� BGS is a one-class classification problem

� With a known object, 2-class classification is easier

– Like Boult’s threshold-with-hysteresis
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– Like Boult’s threshold-with-hysteresis
� Tracker “understands” “objects”

� Knows that an object is stopped or moving

� Tracker can control when objects become part of background, treating 
them as unitary regions, whereas BGS must rely on pixel-based 
methods or region heuristics. 
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Tracking difficulties

� Many other tracking problems:
� Fragmentation- BGS often fails. An object becomes two regions

– new fragments are absorbed into nearby tracks untils split by fission
– “Fusion” class accumulates evidence for nearby objects merging

� Two objects may enter together and be indistinguishable until later

– “Fission” class accumulates evidence for splitting object
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� One object leaves as another enters 

– Detect “Relay” tracks

� One object occludes another for a long period

� Objects stop and are “learned” by the background model

– Tracker control over the BGS inhibits adaptation of tracked objects
– Tracker forces push/pop to background model for truly static objects
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Homework

� Read & write a short summary of
� Real-Time Tracking of Non-Rigid Objects using Mean Shift 

(2000) Comaniciu, Ramesh and Meer 
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