

IBM Research

Class 4: Tracking

Andrew Senior

aws@andrewsenior.com

http://www.andrewsenior.com/technical Exploratory Computer Vision Group IBM T. J. Watson Research Center Yorktown Heights, NY

© 2008 IBM Corporation

_	-	
	-	the second second
_	_	
_	_	

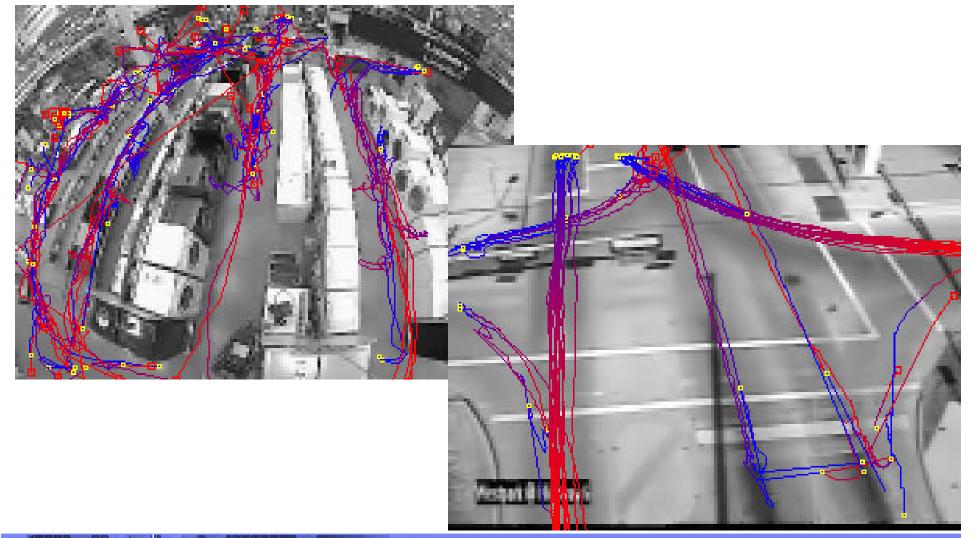
Overview

- Why tracking?
- 2D Tracking
 - Tracking types
 - Tracking by data association
 - Occlusions
 - Fragmentation
 - Model update
 - Localisation
- Conclusions

_	_		
	-	-	
		_	

What is tracking?

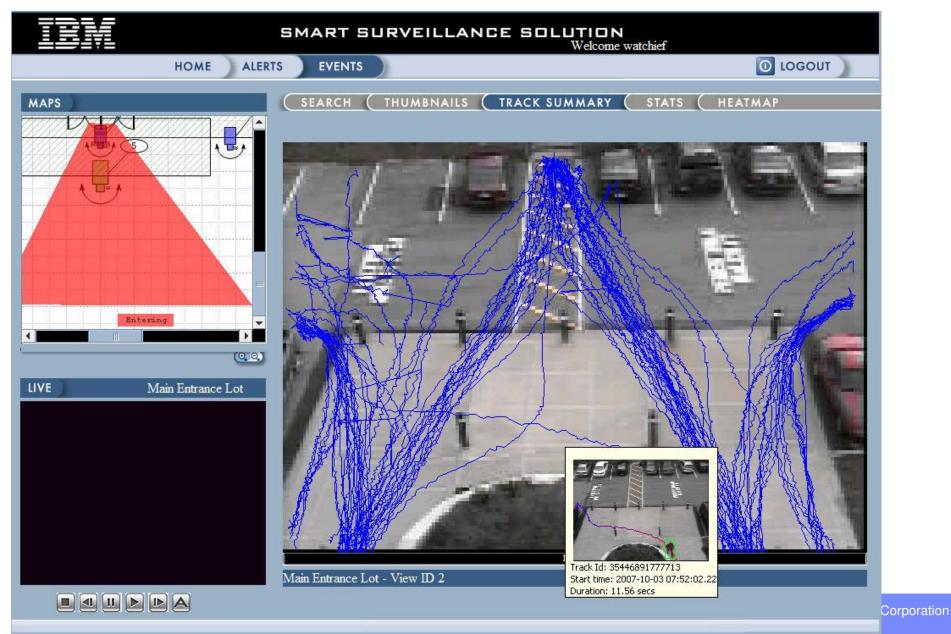
- Locating an object over time
- Tracking has a long history e.g. in radar



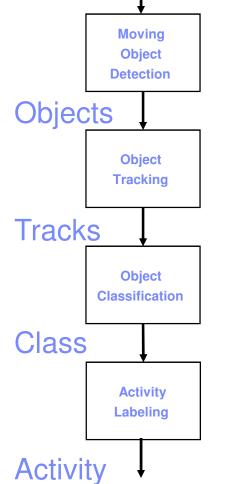
Why tracking?

- BGS is sufficient to detect moving objects
 - BGS contains no temporal information, results are generated for every frame.
 - lots of data
 - Sufficient for detection of motion
 - For video compression
 - e.g. alerts for perimeter protection
 - Need "higher level" information for search
- Tracking associates multiple observations of an object and treats them as a unitary whole.
 - Representation & visualisation
 - Search
 - Behavioural understanding & alert triggering
 - speed, trajectory
 - Compression

Trajectories


5

© 2008 IBM Corporation



Track-based interface

Smart Surveillance Engine Video

-	-	
<u> </u>	_	EVE
		= 7 =

Tracking types

- Clustering contour features
- FG blob assignment
 - Assignment problem
 - Splits, merges, occlusions
 - Occlusion bridging
 - Tracking through occlusions
 - Appearance models

Tracking by clustering contour features

- Pingali et al. 98 Tracking tennis players and people in stores
- Uses simple frame differencing (no background model) with morphology to join regions.
- Find curvature extrema on countours
- Match features with distance measure

 $k_r \delta r^2 + k_\theta \delta \theta^2 + k_\kappa \delta \kappa^2$

- Weighting location, angle, curvature
- Features that move similarly over a period are grouped into clusters

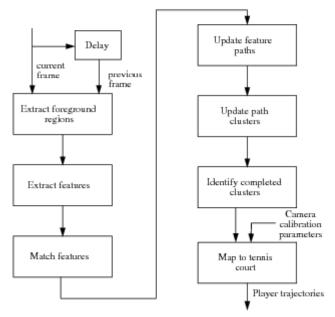
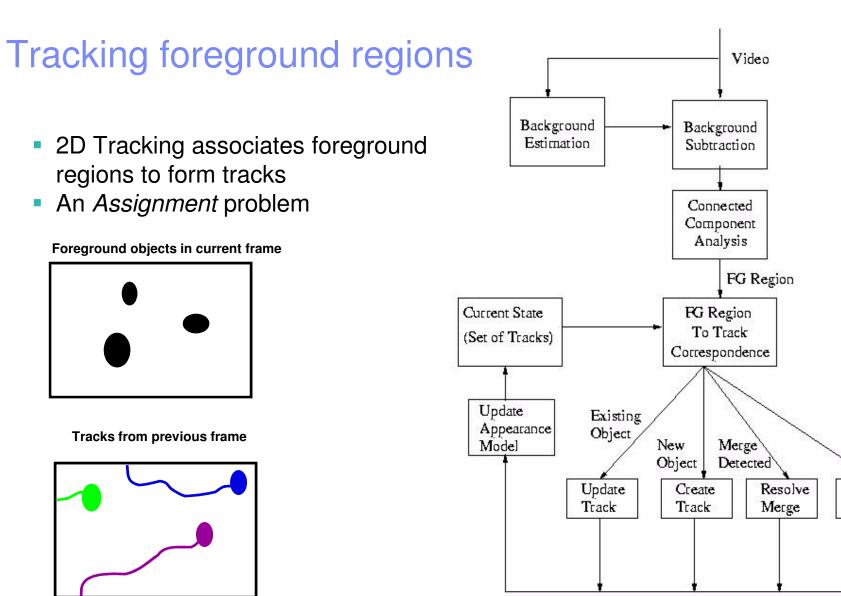



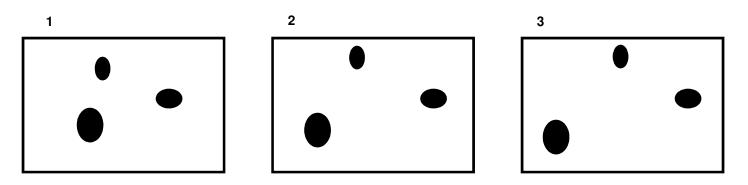
Figure 2. Steps in tracking player motion from video

Features (black) & cluster trajectories (grey)

=	
_	
_	

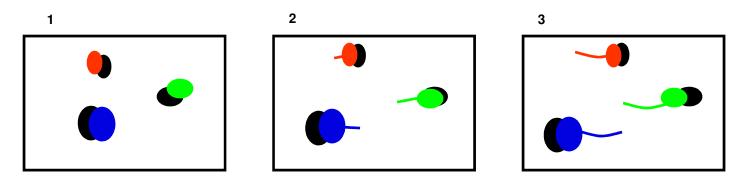
Split

Detected


Resolve

Split

_	
_	
_	


BGS Masks

	_	
		and the second se
_		
	_	

Association by proximity

Associate foreground regions with current tracked objects

_	-	
_		

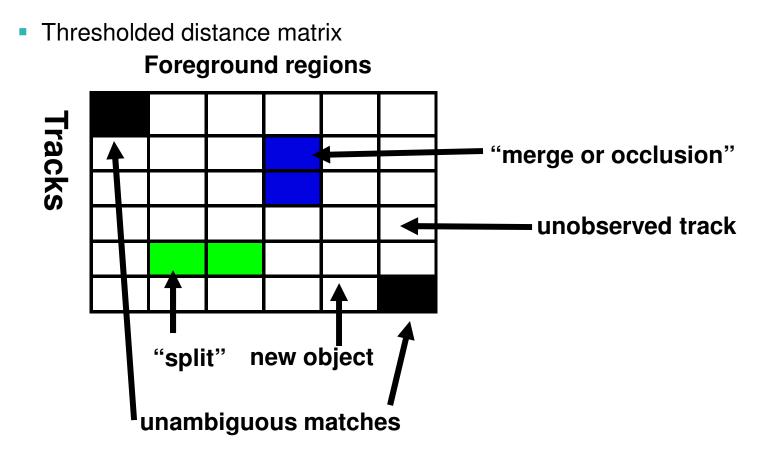
Object-track association

- Association metric choice:
 - Proximity of centroids
 - very dependent on object scale
 - Overlap
 - Can fail with BGS dropout / fast objects
 - Boundary distance
 - Expensive to calculate
 - Bounding box distance
 - Bounding box to centroid

_	_		
	-	-	
		_	

Track-object association

Compute matrix of object-track distances
Foreground regions


<u> </u>	0	50	100	90	74	12
Tracks	60	60	20	2	120	15
ks	60	60	20	2	120	15
	58	85	49	49	47	0
	12	0	0	67	26	24
	37	45	84	85	36	37

Threshold to keep matches

14

Track-object association

-	
_	
_	

Unambiguous matches

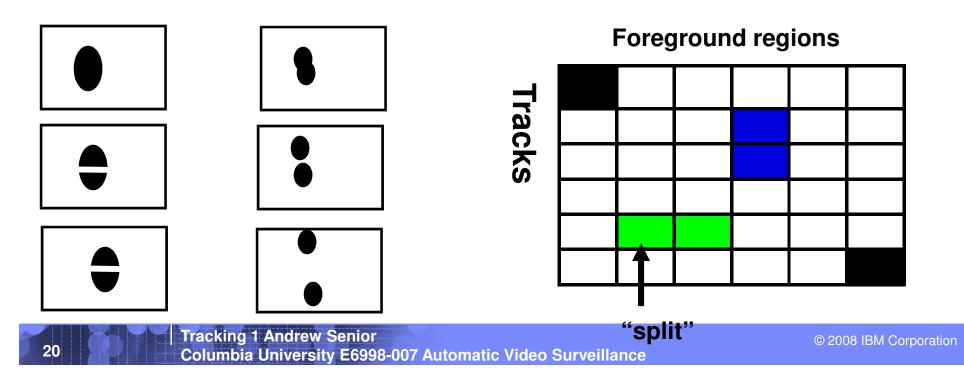
- If there is a clear correspondance between track and object
- Build up a track history by adding new observation to object
 - Centroid
 - Bounding box
 - Mask
 - Appearance
 - Velocity
 - All observations are noisy
- For sparse scenes, matches may all be unambiguous (or fragmentation)

Track creation / destruction

- Create track when (sufficiently) detected
 - Discard short tracks as noise
- Consider track concluded when it hasn't been observed for N frames
 - N depends on scene and algorithm- false negative characteristics

Prediction

- The history can be used to predict the object's location
 - Predicted location should give smaller, less ambiguous distances
- First order model (constant velocity) using smoothed velocity history
 - $X_{t+1} = X_t + v.\Delta t$
- Higher order models unlikely to fit motion better. Don't account for "innovation", particularly in noisy data
- Kalman filter can be used for prediction
 - Stauffer & Grimson
- Learned behaviour might also make predictions
 - Known turns, decelerations etc.


Prediction

- Displacement of an object is inversely proportional to frame rate
- At sufficiently high frame rates (depends on object speed and dimensions), object will overlap with its previous location
 - e.g. 400mm wide person at 30fps will overlap at speeds <12m/s (27mph)
 - 5m vehicle at 15fps will overlap at speeds <75m/s (168mph)
- Opinion
 - prediction isn't so important- it will only disambiguate targets if they are likely to occlude one another anyway
 - Tracking becomes easier (and faster) at high frame rates so track fast and often
- Systems are mostly designed for live video (albeit with processing constraints)
 - Few systems would track well on stored video at <=4fps

		_
	_	
		STATISTICS.
		The second second
_	_	

Splitting

- One tracked object corresponds to multiple FG fragments
 - 1) Object fragmented (BGS dropout)
 - Need to associate all fragments with same object
 - Boult et al. 2001
 - 2) Two objects were being tracked as one object and have separated
 - Need to create new object(s)

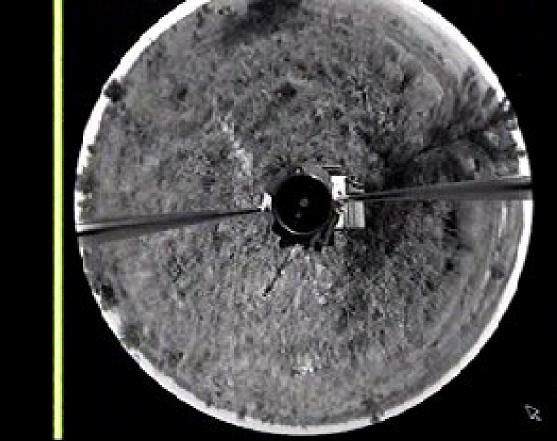
_	-	-		-
	and a	_		
			and so the second se	
		_		
_	-	_		-
_				


Splitting

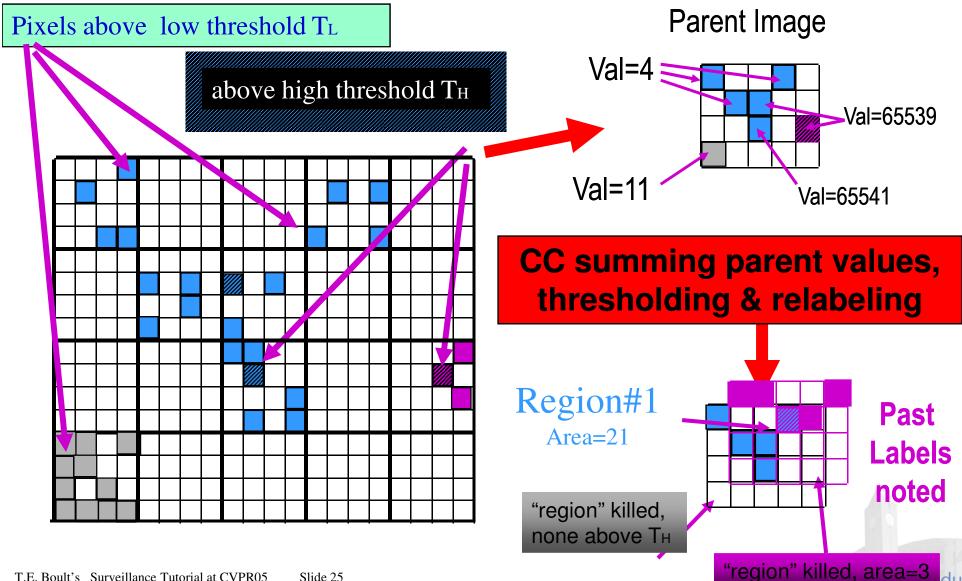
- Need to distinguish type 1 & type 2 motions
- Accumulate evidence in "fission" data structure
- e.g. measure relative positions of blobs, separation, velocities
 - Consistently separating motion indicates type 2
 - Unsustained fragmentation, random motion (different fragmentation) or similar motion indicate BGS failures
- Wait until evidence accumulates before splitting object
 - Representation?
 - Need to infer the motion of the two objects now we know there are two
 - Copy trajectory
 - Copy trajectory with shift (assuming one was always offset)

_	_	_	_	_
	-	-		_
				-
-				

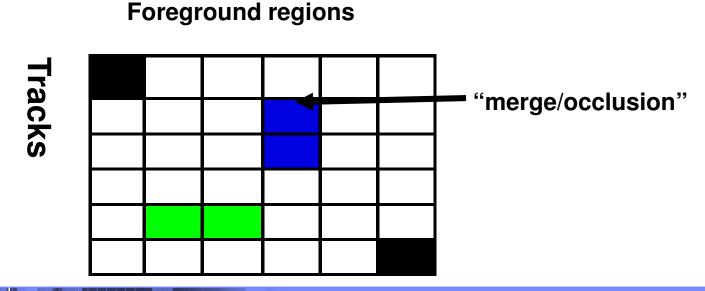
PETS 2002 tracking in shopping mall


Stauffer & Grimson

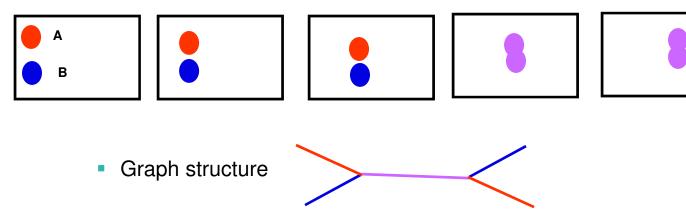
- Hypothesize object based on pairs of components from consecutive frames
- Prediction by Kalman filter
- Probabilistic assignment of FG regions to tracks
- Does not attempt to track through occlusions

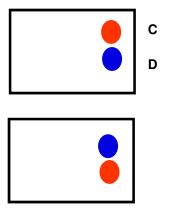

Boult et al. "Into the woods" led to "Guardian Solutions" surveillance product

- Tracking snipers
- Uses Thresholding with hysteresis on background differences
- Analysis with Quasi-Connected components
- Tracking seems to be by simple overlap


Quasi-Connected Components

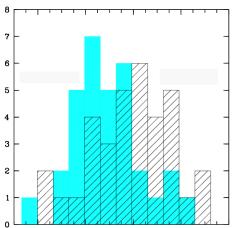
Occlusions


- Two or more tracked objects overlap.
- Trivial association no longer works- 2 or more objects correspond to one or more FG regions.



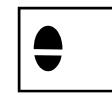
Occlusion bridging

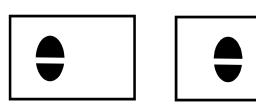
- Simple approach to dealing with occlusions
 - Track the occlusion as a new object
 - When the object splits, try to work out correspondence
 - A==C or A==D?
 - use features e.g. appearance, trajectory, size shape etc.


- Problems:
 - multiple occlusions
 - Lighting or appearance changes during occlusion
 - Fragmentation, merges & splits during occlusion

	_	
_		
_		

Similarity metrics


28


- Most common probably histogram intersection
- Find histograms H_A, H_B of A & B at every frame
- Store previous values when entering an occlusion
- When objects leave occlusion calculate histograms of C &D
- Calculate similarity s(H_A, H_C)=sum_i(min(H_A[i], H_c[i]))
 - 0<= s(H_A, H_C) <=1
- Choose assignment according to sign of
- $s(H_A, H_C)+s(H_B, H_D)-s(H_A, H_D)-s(H_B, H_C)$
 - <0 => A==D, B==C
 - >0 => A==C & B==D
- Other histogram distances (Euclidean, cross ...)
- Multiple histograms to account for spatial distributi

Merging

- When two objects move together consistently, then perhaps they're the same object.
- e.g. a person's head and foot enter the scene first and are detected as two well-separated FG blobs
- Solution
 - detect consistent motion of distinctly tracked objects in a "Fusion" data structure and detect consistency- e.g. scaled variance in separation of centroids, maximum distance between objects.

Object modelling

- Improve tracking by modelling the object
- Use model to improve localization & track through occlusions
- e.g. W4 Haritaoglu et al.
 - Grey-scale only

30

- Prediction using second order model (constant acceleration)
- Assignment with overlapping regions
- Align model median pixel with FG region median pixel
 - Then find maximum correlation of model/FG silhouette
- Occlusions tracked separately, then bridged
- Does handle true / false splitting

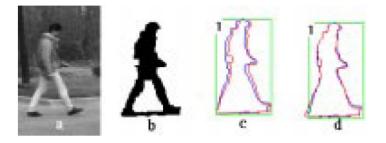
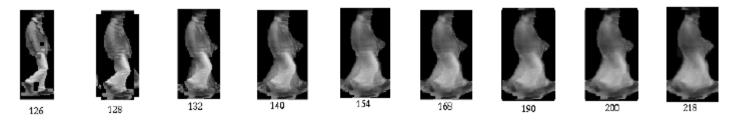


Figure 1: Motion estimation of body using Silhouette Edge Matching between two successive frame a: input image; b: detected foreground regions; c: allignment of silhoutthe edges based on difference in median; d: final allignment after silhouette corelation


_	-		_
	-		
		1	
	_	 ==	_
_			-

W4 : Occlusion Bridging

Temporal texture template

$$\Psi^{t}(x,y) = \frac{I(x,y) + w^{t-1}(x,y) \times \Psi^{t-1}(x,y)}{w^{t-1}(x,y) + 1}$$

Update over time

Appearance models

Model foreground regions with an appearance model+probability mask

 $P_c(\mathbf{x},t), \ M_{RGB}(\mathbf{x},t)$

Update each by blending:

$$M_{RGB}(\mathbf{x},t) = M_{RGB}(\mathbf{x},t-1)\alpha + (1-\alpha)\mathbf{I}(\mathbf{x},t) \text{ if } \mathbf{x} \in \mathbf{F}$$
$$P_{c}(\mathbf{x},t) = \begin{cases} P_{c}(\mathbf{x},t-1)\lambda & \text{if } \mathbf{x} \notin \mathbf{F} \\ P_{c}(\mathbf{x},t-1)\lambda + (1-\lambda) & \text{if } \mathbf{x} \in \mathbf{F} \end{cases}$$

Trim borders when unlikely for speed/compactness

Remove low probability pixels

32

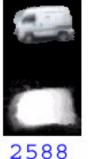
Trim low probability edge rows/columns (when object shrinks)

_		
		and the second second
		eve.
	_	= 7 =

Model evolution over time

- Model adapts to changes in shape, size pose, lighting etc.
- Does blur colours
 - Could use a multi-modal distribution

884



1733

© 2008 IBM Corporation

Tracking 1 Andrew Senior Columbia University E6998-007 Automatic Video Surveillance

33

_		
_	-	
	_	and the second second

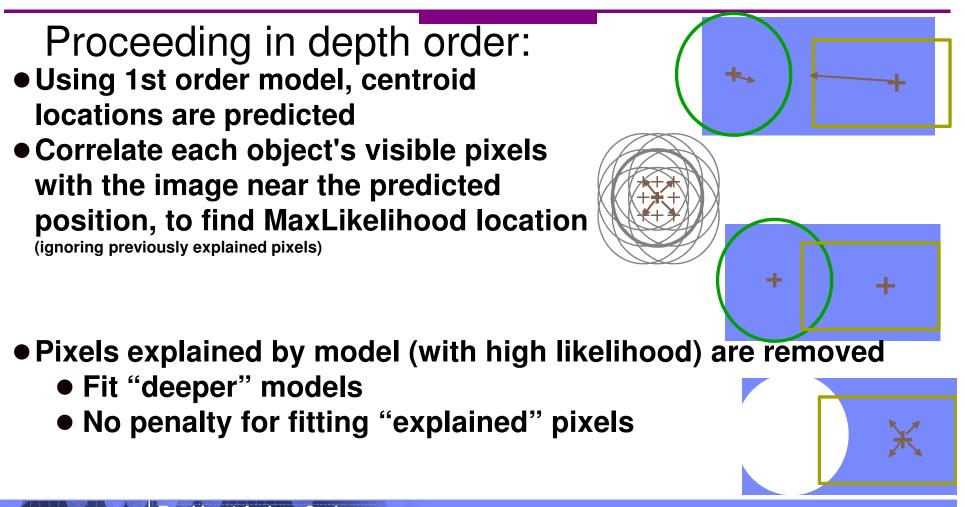
Locating the objects

• Find best fit location by searching over x (correlation) $p(I, \mathbf{x}, M) = \prod p_{RGB}(\mathbf{x} + \mathbf{y})P_c(\mathbf{x} + \mathbf{y})P_{BG}(\mathbf{x} + \mathbf{y})$

$$p_{RGB}(\mathbf{x}) = (2\pi\sigma^2)^{-\frac{3}{2}} e^{\frac{-\|I(\mathbf{x}) - M(\mathbf{x})\|^2}{2\sigma^2}}$$

Bias against fitting "background" pixels

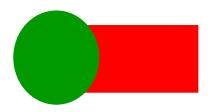
$$P_{BG}(\mathbf{x}) = \frac{1}{P_{\text{penalty}}} \text{ if } \mathbf{x} \in \mathbf{F}$$
$$P_{\text{penalty}} = 0.05 \text{ if } \mathbf{x} \notin \mathbf{F}$$


Coarse-to-fine search

IBM Research

_	_	_	
_	-	-	

Occlusion Resolution


© 2008 IBM Corporation

Depth ordering

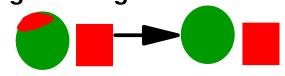
36

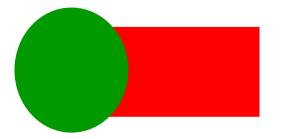
- Disputed pixels are classified using ML $class(\mathbf{x}) = argmax_i p_{RGB_i}(\mathbf{I}(\mathbf{x}))p_{c_i}(\mathbf{x})P_{NO_i}$
- Ambiguous pixels are labelled as such

- In regions of overlap, choose model that explains most pixels in the disputed regions
- Consider that object the frontmost, and assign all disputed pixels to it

- In successive frames, fit front-most object first.
 - But recalculate depth ordering

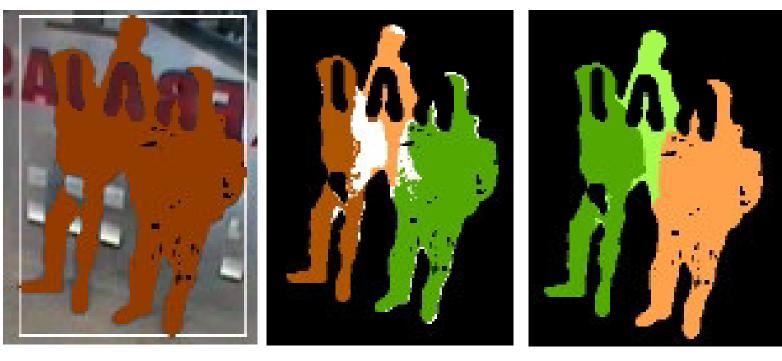
_	
	STATE OF TAXABLE PARTY.


Appearance models for tracking


- Each pixel in foreground region must be explained
- Hypothesize:
 - predicted existing object
 - including occlusion resolution
 - new part of existing object
 - new object

Occlusion resolution

- Objects are ordered so that those which are assigned fewer disputed pixels are given greater depth. Those with few visible pixels are marked as occluded.
- Pixels overlapped by two objects are assigned to the frontmost object which overlapped them.
- Unclassified pixels (novel) are 'filled' from neighbouring regions, or assigned to the nearest object
- Simple rules for defragmentation


_	-	
_		

Model update

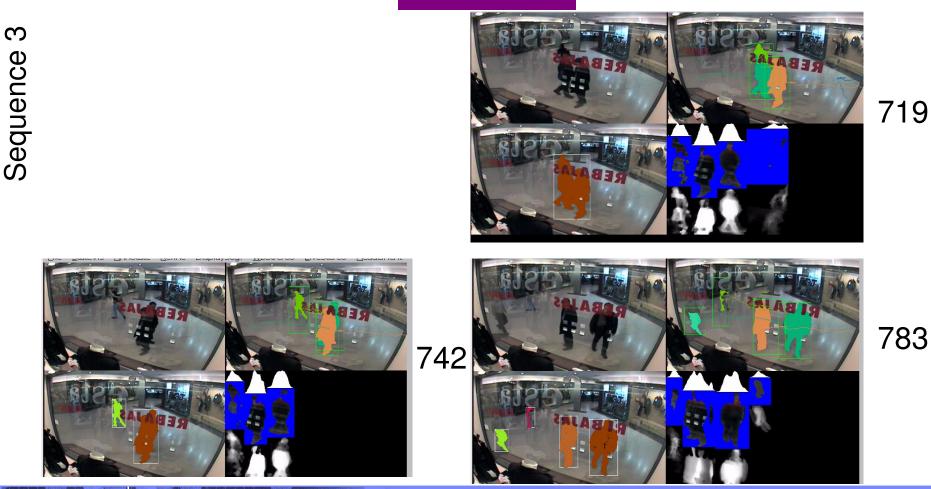
- During occlusions model update is riskier
- Assignment is inaccurate
- Model drift problems learn wrong appearance
 - Reduce update,
 - Ignore some regions
 - Turn off update altogether

_		
_	-	
	_	and the second second

Handling occlusions

BGS

	and the second se
-	


Tracking through occlusions

	STATE OF TAXABLE PARTY.

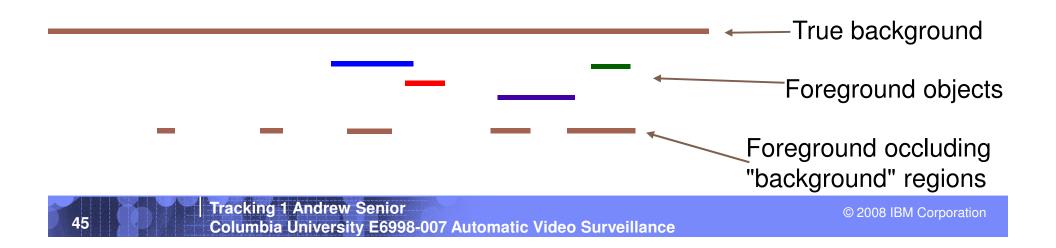
42

Tracking Through Occlusions II

_	_	_	_	_
	-	-		_
				-
-				

PETS 2002 tracking in shopping mall

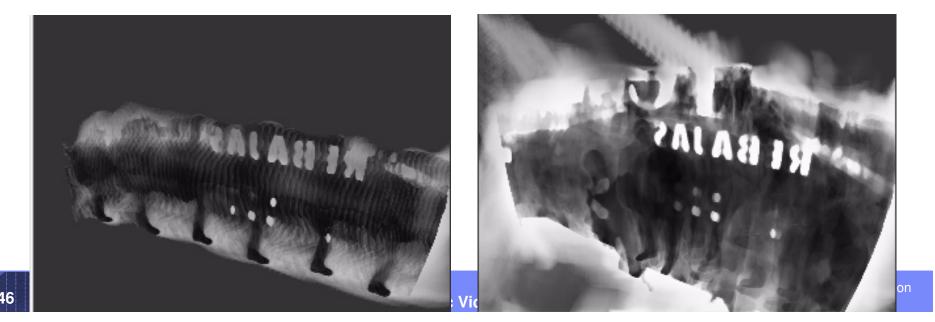
_	_	
		and the second second
		===
_		= : =


Region of uninterest

- High noise regions give many false positives
 - Waving trees
 - water,
 - flashing lights
 - CRT displays
 - areas where perspective displays many small objects
- Hand marked or (ideally) learned
- Reduce false positive detections and consequent tracking errors by masking out misleading areas
- Tracking needs to know where these regions are lost tracking or missed observations

Foreground occlusion model

- Foreground objects may be occluded by pixels in the "background model"
 - Reflections, window text, window frame
 - Results in erosion and poor fitting of foreground models
- Learn the areas where this happens



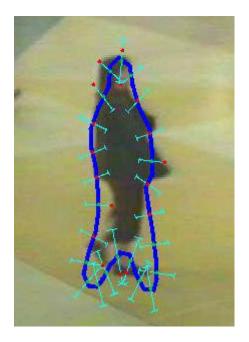
Foreground occlusion model

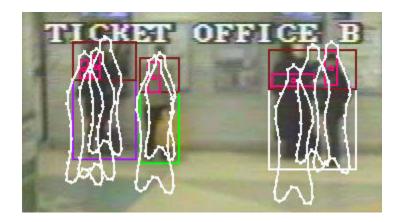
- Whenever a pixel is classified as background but is overlapped by a foreground object, increment its likelihood of being "foreground occluding"
- Probability mask update is now:

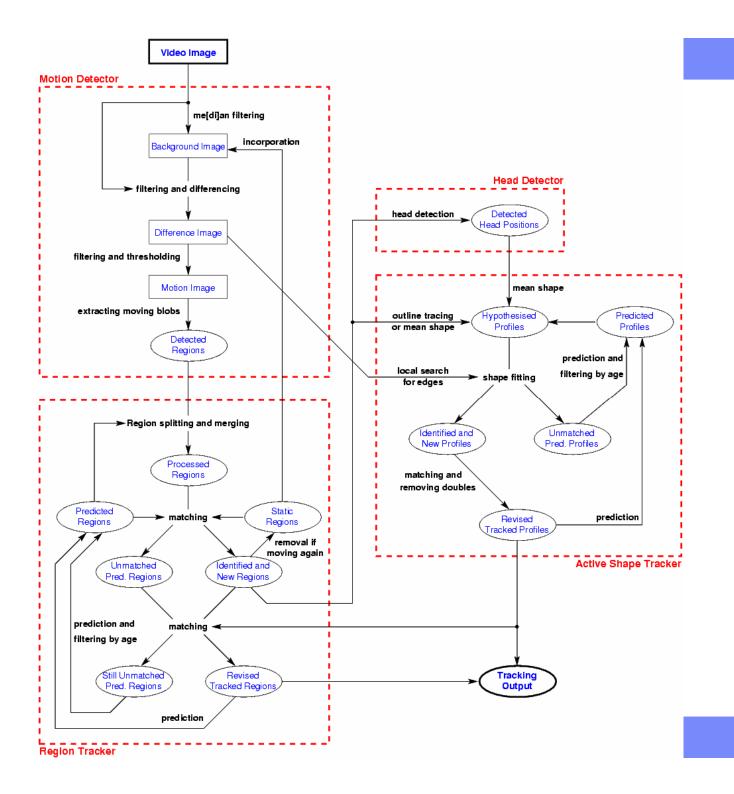
 $P_f(\mathbf{x}) = \frac{k_n + \sum_{t:\mathbf{x} \notin F} P_c(\mathbf{x})}{k_d + \sum_{\forall t} P_c(\mathbf{x})}$

$$P_{c}(\mathbf{x},t) = \frac{P_{c}(\mathbf{x},t-1)(1-\lambda(1-P_{f}(\mathbf{x})))}{P_{c}(\mathbf{x},t-1)\lambda + (1-\lambda)} \quad \text{if } \mathbf{x} \notin \mathbf{F}$$

_		
	_	
_		
_		

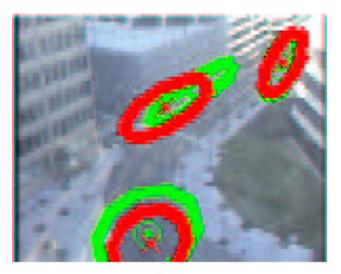

Use the foreground occlusion model


- Discount observation failures at known foreground occlusions
 - Don't reduce probability
- Record track disappearance when it enters FGO regions


_	
_	and the second s
_	second

Baumberg "ADVISOR" tracker

- Baumberg 1995
- Detection by BGS.
- Modelling people by snakes

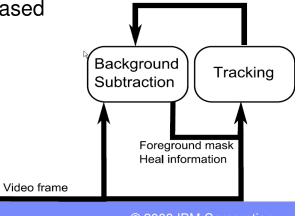

IBM

50

=	
-	= 7 =

Track Sources and Sinks

- Hand mark / learn where objects appear and disappear (see behaviour analysis class)
 - Stauffer "Estimating Sources and Sinks"
- Information can be used to distinguish between noise and true observations
 - A new object shouldn't appear except at a source
 - Objects reaching a sink are likely to disappear


_	
_	
_	_
_	

Interaction of tracking and background subtraction

- Often constructed as a modular, feed-forward system
 - Simpler analysis
- Tracking can inform background subtraction
- Object detection

51

- BGS is a one-class classification problem
- With a known object, 2-class classification is easier
 - Like Boult's threshold-with-hysteresis
- Tracker "understands" "objects"
 - Knows that an object is stopped or moving
 - Tracker can control when objects become part of background, treating them as unitary regions, whereas BGS must rely on pixel-based methods or region heuristics.

Tracking difficulties

- Many other tracking problems:
 - Fragmentation- BGS often fails. An object becomes two regions
 - new fragments are absorbed into nearby tracks untils split by fission
 - "Fusion" class accumulates evidence for nearby objects merging
 - Two objects may enter together and be indistinguishable until later
 - "Fission" class accumulates evidence for splitting object
 - One object leaves as another enters
 - Detect "Relay" tracks
 - One object occludes another for a long period
 - Objects stop and are "learned" by the background model
 - Tracker control over the BGS inhibits adaptation of tracked objects
 - Tracker forces push/pop to background model for truly static objects

References

- Into the woods: visual surveillance of non-cooperative and camouflaged targets in complex outdoor settings Terrance E. Boult Ross J. Micheals Xiang Gao Michael Eckmann Vision And Software Technology (VAST) Laboratory, Lehigh University
- Gopal Pingali, Yves Jean and Ingrid Carlbom, "<u>Real Time Tracking for Enhanced Tennis</u> <u>Broadcasts</u>," Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, June 1998, pp. 260-265.
- Chris Stauffer, Eric Grimson, <u>"Learning Patterns of Activity Using Real-Time Tracking</u>", IEEE Transactions on Pattern Recognition and Machine Intelligence (TPAMI), 22(8):747-757, 2000.
- <u>W4: Who? When? Where? What? A Real Time System for Detecting and Tracking People</u> Ismail Haritaoglu, David Harwood and Larry S. Davis International Conference on Face and Gesture Recognition, April 14-16, 1998,
- <u>Estimating Tracking Sources and Sinks</u> Chris Stauffer Proceedings of the Second IEEE Workshop on Event Mining, July 17, 2003
- Appearance Models for Occlusion Handling A. Senior, A. Hampapur, Y.-L. Tian, L. Brown, S. Pankanti, R. Bolle in Journal of Image and Vision Computing Volume 24 Issue 11, pp 1233-1243 November 2006
- Fusion of Multiple Tracking Algorithms for Robust People Tracking Nils T Siebel and Steve Maybank ECCV 2002

Homework

- Read & write a short summary of
- Real-Time Tracking of Non-Rigid Objects using Mean Shift (2000) Comaniciu, Ramesh and Meer