Video Surveillance

E6998-007

Class 1: Introduction

Andrew Senior

Rogerio Feris

Ying-Li Tian
Class 1

• Outline
• Introductions
• Surveillance overview
• IBM Smart surveillance system
 – presentation & demonstration
• Surveillance system architectures
• Course structure & grading
• Project ideas
Andrew Senior
http://www.research.ibm.com/people/a/aws/

• Cambridge MA 1990, Ph.D. 1994
 – Offline handwriting recognition with recurrent neural networks
• Speech recognition research LIMSI, Paris
• Post-doc IBM
 – Online handwriting recognition (tablet PCs)
• Research Staff Member IBM
 – Fingerprint classification
 – Face recognition & detection
 – Audio-visual speech (lip-reading)
 – People tracking
 – Smart Surveillance System
Rogerio Feris

http://rogerioferis.com

- MSc. University of Sao Paulo, 2001 (Face Tracking)
- Ph.D. UC-Santa Barbara, 2006 (Multi-Flash Photography)
- Research Internships
 - Microsoft Research, 2001 (Gaze-aware Teleconferencing)
 - Mitsubishi Electric – MERL, 2003/2004 (Non-Photorealistic Camera)
 - IBM Research, 2005 (Multi-view Face Detection)
- Post-Doc IBM, 2006 (Face Analytics)
- Research Staff Member IBM - current position
 - Smart Surveillance System
 - Face Analytics, Object Classification, Abandoned Object Detection
YingLi Tian

• Ph.D. The Chinese University of Hong Kong, 1996 (Shape from Shading)

• Associate Professor, National Laboratory of Pattern Recognition, Chinese Academy of Sciences, China.
 – Lead the Computer Vision and Graphics Group

• Post Doctoral Fellow, Robotics Institute, Carnegie Mellon University, 1998 – 2001 (Facial Expression Analysis)

• Research Staff Member IBM - current position
 – IBM Smart Surveillance System
 – Facial Expression
Video Surveillance
Class 1:
Surveillance Overview

Andrew Senior
Rogerio Feris
Ying-Li Tian
Overview

• Surveillance technology progression
• Increase of surveillance
• Automation of surveillance
• <Demonstration of IBM SSS>
• Surveillance architectures
Video surveillance technology progression

- **CCTV**
 - Direct video from camera to monitor
- **Analog recording**
 - Record on VHS tapes (running slowly)
 - Time division multiplexing: e.g. 10 channels at 1fps
 - Manual tape changing every day
 - Reuse the tapes every month
 - Pull tapes to investigate incidents
Traditional system

- Daily tapes
- (time) Multiplexers
- Slow speed VCR
- quad multiplexers
- Switchable monitors
- monitors locked to channels
- PTZ controller
Progression: Digital Video recording

- Embedded/Linux/Windows device
 - 4-16-32 channels capture
 - Storage on hard disk
 - Encrypted
 - Access is password protected
 - More configurable
 - Buy bigger hard drives
 - Trade off space: duration/fps/channels/resolution
 - Instant access (from timestamp)
Progression: Networked Video Recorder

- More advanced DVRs may have
 - Network access for control
 - Record from ethernet
 - Better compression for static scenes
 - More configurable
 - Schedules (more detail during the day)
 - Motion detection
 - Alert and “record on motion”
 - Integration of inputs/outputs
 - Record on Infra-red (PIR) sensor
 - Steer PTZ on infrared sensor
 - Still ‘appliances’
Progression:
“Smart surveillance”

• Integrated IT infrastructure
 – Computer keyboard with reconfigurable, multi-monitor interface

• Video analytics
Increasing surveillance

• Rise of video
 – Security concerns
 – Cheaper & more powerful hardware
 – More capability
• “Ring of steel” in London 1990s
 – Response to IRA bombing
 – 4 million cameras in the UK .. in 2002
 • (Norris)
 – Expanding everywhere
Does surveillance work?

- Recordings frequently used for evidence
 - And for TV news broadcasts
- Deterrent effect on crime
 - Or a “balloon” displacement effect?
- “Force multiplier” is indispensable
- Is it cost-effective?
Video Surveillance

• Manual surveillance impractical
 – Increasing number of channels
 – lack of attention span
 – Increasing “situational awareness” needs
Video surveillance automation

• Have computers watch the video
 – Scalable
 • More channels: just buy more servers & licenses
 – Cheaper than people
 – People still have to deal with the (false) alarms
 – Indexing
 – Real-time alerts
Video Surveillance vs Automated analytics

Why is this car parked here? We should change our security policy

IBM S3 - Watches video & logs activity

- Show all red cars that drove North on 10 Ave over the last month
- Alert – car parked in loading zone > 5 mins
- Unusually low activity on 42nd street.
Commercial Use

• A huge growing field
• Major commercial market for computer vision
• Hundreds of companies doing analytics
Application domains

• Security & Operations
 – Public sector: city streets, airports, train stations
 – Secure facility protection
• Retail
 – “Loss” prevention
 – Understanding shopper behaviour
• Casinos
• Museums
Security

• Indexing everything that happens
 – For forensic investigation, after-the-fact
 – What happened?
 – Who did what?

• Instant alerts
 – Warning staff of “indicator behaviour”

• Watchlist of faces
Retail

- Loss prevention
 - Leads investment- already have “asset protection” departments, with cameras, DVRs
 - Manual tracking of “suspicious” people
 - Steering “Pan-Tilt-Zoom” (PTZ) cameras
 - Recording events for forensic investigation
 - Deterrence is as important as actually catching people

 - Need to automate the task & deal with specific “threats”
Retail

• Future applications
 – Operations
 • Monitoring queues
 • Counting customers
 • Measure “conversion rates” customers:sales
 – Marketing
 • Segmenting customers
 • Triggering direct marketing
Casinos

• Detect, record & index cheating/suspicious behaviour
• Find “valued customers”
• Banned or “watchlist” customers
Questions?
SSS Demonstration
Surveillance architecture

- Legacy systems architecture
- Future systems architecture
- Video sources
- Analytics (software) architecture
- Variations
System architecture

• Legacy CCTV systems
 – Analog video, coax cable
 – Central control room contains controllers, recorders, monitors, staff
Future system architecture I

• All IP
 – Possibly wireless (though that is subject to attack)
 – Possibly independent of data network for QOS needs
 – All data encrypted
 – Convergence of IT & security departments
 – Convergence of physical and electronic security
 – Central, dynamic, computer-based control
 – Increasingly automated
Future system architecture II

- Video storage and processing at the camera
 - DSP encodes, encrypts and interprets video
 - DSP on same wafer as imager
 - Video is not transmitted except when someone needs to view it
- Metadata in distributed clustered content manager
Video sources

• Analog cameras (NTSC/PAL)
 – To frame-grabber on computer
 – Via encoder box (e.g. Axis analog→IP)
 – Constrained ~ 640x480, 30fps
 – Control line for PTZ
 – Coax cable. Maybe multiplexed onto fiber optic

• IP cameras
 – Images direct to ethernet
 • Control over resolution, rate, compression
 – PTZ control over ethernet
 – Power over ethernet (1 cable)

• IR/Thermal, multispectral…
Analytics architecture

• A series of “modules”
• Our system uses a publish-subscribe architecture
 – Communication through a metadata queue
 – Modules are largely independent and using common protocols to allow recombination
Modularized video analytics

- Data (image) acquisition
- Object detection
 - Background subtraction
 - Motion-based
 - Model-based detection
 - Face, pedestrian, vehicle
- Tracking
- Alert detection
- Classification
- Colour indexing
- Recognition (faces, license plate…)
- Behaviour analysis
- Communication
Variations

• Steerable cameras
 – Pan, tilt & zoom
 – Very common in legacy systems
 – Less used in automation
 • Guarantee constant coverage
 • Analytics are easier with static cameras

• Mostly we assume static cameras
Variations

• Interacting cameras
 – Track from one camera to another
 • Overlapping or with gaps

• Other sensors
 – Increasing range of options
Course structure & grading