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SummaryComputer handwriting recognition o�ers a newway of improving the human-computer interface and of enabling computers to read and process the manyhandwritten documents that must currently be processed manually. Thisthesis describes the design of a system that can transcribe handwritten doc-uments.First, a reviewof the aims and applications of computer handwriting recog-nition is presented, followed by a description of relevant psychological re-search. Previous researchers' approaches to the problems of o�-line hand-writing recognition are then described. A complete system for automatic,o�-line recognition of handwriting is then detailed, which takes word imagesscanned from a handwritten page and produces word-level output. Methodsfor the normalization and representationof handwrittenwords are described,including a novel technique for detecting stroke-like features. Three prob-ability estimation techniques are described, and their application to hand-writing recognition investigated. The method of combining the probabilityestimates to choose the most likely word is described, and performance im-provements are made by modelling the lengths of letters and the frequencyof words in the corpus. The system is tested on a database of transcripts froma corpus of modern English and recognition results are shown. Recognitionis described both with the search constrained to a �xed vocabulary and withan unlimited vocabulary.The �nal chapter summarizes the system andhighlights the advancesmadebefore assessing where future work is most likely to bring about improve-ments.Key wordsO�-line cursive script, handwriting recognition, OCR, recurrent neural net-works, forward-backward algorithm, hiddenMarkov models, duration mod-elling.
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Chapter 1IntroductionBy this art you may contemplate the variation of the 23 letters.Robert Burton. The Anatomy of Melancholy.The world is �lling with computers. Whether we like it or not, they arebecoming ubiquitous. As ever more people are forced into contact with com-puters and our dependence upon them continues to increase, it is essentialthat they become easier to use. As more of the world's information process-ing is done electronically, it becomes more important to make the transferof information between people and machines simple and reliable.One of the aspirations of the �eld of arti�cial intelligence, if one ignoresfor the time being the longer-term goals of analysing and emulating humanintelligence, is simply to enable computers to accomplish tasks which are nat-ural to people. Thus computers should be better able to interact with peopleand to act in human society in a less constrained manner than has previouslybeen possible. These aims are re
ected in the more modest attempt by thecomputer industry to make computers increasingly `user friendly'. In thisvein, computers have come out of laboratories and into homes and o�ces;we communicate with them using mice and keyboards rather than punchedcards and toggle switches. Handwriting is a natural means of communicationwhich nearly everyone learns at an early age.1 Thus it would provide an easyway of interacting with a computer, requiring no special training to use e�ec-tively. A computer able to read handwriting would be able to process a hostof data which at the moment is not accessible to computer manipulation.After this argument, it seems surprising how little research there has beeninto the computer recognition of handwriting. One reason advanced is thatthe optimism about the capabilities of imminent speech recognitionmachinesmade people feel that other approaches were unnecessary. While some ofthe promises of speech recognition by machine have already been ful�lled,and researchers are still optimistic, some of the bene�ts have been slow tomaterialize and people have thought again about what is required of human-computer interfaces. Though speech is a very convenient form of commu-1Downing and Leong (1982:p.299) quote an estimated world literacy rate of 71%. In thosepeople coming into contact with computers, the �gure must be higher.O�-line handwriting recognition 6



CHAPTER 1. INTRODUCTIONnication, it is not always the most practical. In noisy environments, thosewhere silence is important, or where a large number of people must workwith computers, it is clear that voice input is not the best solution. Thoughcomputer professionals and secretaries would be loth to give up the conve-nience and speed of a keyboard, for those not familiar with keyboards, andfor portable or occasional use, handwriting entry is clearly of practical value.This has lead to the growth in the last year or two of `pen computing' | theuse of computers which allow input from an electronic stylus (Geake 1992).In addition to a potential mode of direct communication with computers,handwriting recognition is essential to automate the processing of a myriadof handwritten documents already in circulation. From cheques and lettersto tax returns and market research surveys, handwriting recognition has ahuge potential to improve e�ciency and to obviate tedious transcription. Asthe Economist recently suggested, \Today's biggest prize in computer vision,however is text and handwriting...." (Browning 1992).1.1 This thesisThis thesis investigates the use of handwriting recognition as a medium ofcommunication between people and computers. After presenting a generaloverview of handwriting recognition, it focuses on the problem of readinghandwritten documents. Later chapters present research carried out to de-velop a computer system which tackles this problem. The system has beendescribed in earlier papers (Senior and Fallside 1993a; Senior 1993).The thesis is divided into 9 chapters. This chapter describes the aim andcontents of the thesis. The next chapter summarizes the aims and achieve-ments of other work in the �eld of handwriting recognition and establishesa taxonomy of the �eld into which the original work of this thesis can be �t-ted. Applications for handwriting recognition are also examined. Chapter 3studies work in the psychology of reading, to discover knowledge which canbe put to use in the design of a machine handwriting recognition system.Chapter 4 presents an overview of the handwriting recognition systemthat has been designed, and the following chapters describe the workingsof individual parts of that system, including normalization and representa-tion (Senior 1994); feature-�nding (Senior and Fallside 1993b); probabilityestimation and language modelling. Each of these chapters includes detailsof experiments carried out to assess the performance of the techniques pre-sented and a discussion of their validity.The �nal chapter draws together the conclusions of the chapters aboutthe handwriting system and summarizes what has been achieved in this pro-gramme of research. Further work which could be carried on from this thesisis also suggested.O�-line handwriting recognition 7



CHAPTER 1. INTRODUCTION1.2 Original contributionThis thesis describes a new, complete o�-line handwriting recognition sys-tem. The major original contributions described in this thesis are as follows:� The system applies a novel approach, using recurrent neural networksfor probability estimation. While the recurrent neural network has pre-viously been used for speech recognition, it has not before been appliedto the recognition of handwriting.� The training of a recurrent neural network with the forward-backwardalgorithm is described here for the �rst time.� The psychology of reading literature is reviewed, showing how the studyof human reading and writing gives an indication of the characteristicswhich might prove useful in a reading machine.� The methods used here to normalize handwritten words are an origi-nal synthesis of new and established techniques. Previously publishedmethods are compared and improved upon.� Words are encoded in an original manner which is shown to be bet-ter than the common bit-map representation, and a novel method offeature detection, based upon the use of snakes is described.� Chapter 8 investigates the use of duration modelling for o�-line hand-writing recognition and investigates the problems of out-of-vocabularywords with lexica of limited size.1.3 NotationThroughout this thesis, the distinction is made between a handwrittenword,and the idea of that word. To make this distinction, the following typo-graphical convention is employed. To represent a handwritten word or let-ter, the following font is used: `a�bc��fgh�i�jk�lm�n�op�qr�u�vwxyz'; and to de-note the letters or words as concepts (McGraw et al. 1994), this font is used:`abcdefghijklmnopqrstuvwxyz'. The purpose of the system described here isto transcribe `word��' into `words'. When the internal representation of thesystem is referred to (section 5.2), a single frame of data is shown thus: xt;and the data representing a whole word are shown as x�0. The set of let-ters as concepts is denoted � and an arbitrary individual letter is shown �i.The discrete probabilities used throughout are denoted P . These include theprobability of one or several frames of data given that frame t is part of letter�i | P (xtj�i) or P (xt0j�i) respectively; the probability that frame t representsletter �i given the data of the frame| P (�ijxt); and the probability of the jthelement of a frame xt, given that that frame represents letter �i | P ((xt)jj�i).O�-line handwriting recognition 8



Chapter 2Handwriting recognition: : :a vast population able to read but unable to distinguish what isworth reading. G. M. Trevelyan. English Social History.As computer power has increased over the years, and their range of applica-bility has similarly increased, one of the major goals of research into com-puters has been to make computers easier to communicate with and thus tomake their bene�ts available to a much greater number of people. One ofthe major obstacles to the integration of computers as universal informationprocessing systems is the fact that most useful business data is still storedon paper. Particularly when dealing with the general public, a huge amountof o�ce paperwork is handwritten. Letters and faxes, as well as forms orannotations to printed documents, may be handwritten; in many situationsit would be highly desirable to process the contents of these documents bymachine, for which handwriting recognition is essential.Similarly, computer user interfaces need to be improved to enable com-munication between computers and a wider class of users in a greater varietyof circumstances. While ideas such as the mouse and touch-sensitive screenshave been developed, and much work has been carried out into computerspeech recognition, there is still much scope for making the interface morenatural for users who are not familiar with computers. Handwriting ranksvery highly as a way of communicating linguistic information in a way whichis natural to very many people. Though speech recognition has been claimedas the panacea for user-interface problems, it has been slow to achieve itspromise, particularly in noisy environments, and the limitations of speechrecognition have become clearer as research has advanced.In the last few years the �eld of handwriting recognition has becomemuchmore popular. Not only are more researchers trying to tackle the problemsthat it presents, but solutions to these problems are slowly becoming avail-able and are actually being sold as useful products. Of late, pen computershave become available with handwriting recognition software for isolatedcharacters and more recently for cursive script. Handwriting recognition sys-tems have already started to be used for reading zip codes on envelopes andO�-line handwriting recognition 9



CHAPTER 2. HANDWRITING RECOGNITIONamounts on cheques.Before describing a new handwriting recognition system in later chapters,it is worth presenting here the �eld of automatic handwriting recognition inits entirety. After describing a taxonomy of the �eld, applications envisagedfor handwriting recognition systems are discussed and work by other authorsis presented to demonstrate the approaches taken.2.1 A taxonomy of handwriting recognition problemsHaving established the need for automatic handwriting recognition in gen-eral, it is useful to examine the �eld more closely and to identify severalareas with di�erent applications and requiring di�erent approaches. Thoughmany techniques can be shared, the literature tends to divide into groups ofresearchers, each concentrating on a special area of handwriting recognition.2.1.1 On-line versus o�-lineThe major division is between on-line and o�-line systems. While othermethods could be distinguished, handwriting recognition systems are gener-ally polarized between those receiving their data directly from some sort ofpen device attached to the computer, and those which recognize handwrit-ing already present on a piece of paper| a handwriting equivalent of OpticalCharacter Recognition (OCR) which is alreadywidely used for reading printedmatter. In the literature dynamic is sometimes used to mean on-line andstatic o�-line. So far, the majority of systems have tackled the easier, on-line, problem where the time ordering of strokes is available as well as penup/down information; overlapping strokes can easily be distinguished andstroke positions are accurately known. On the other hand, o�-line systemshave to cope with the vagaries of di�erent pen types, wide strokes whichoverlap and a lack of ordering information. The growth of pen computinghas seen much investment in on-line systems, and the di�culty of o�-linerecognition has deterred research until recently.Since the on-line data from an electronic stylus are a one-dimensionalstream of information, techniques from speech recognition have been suc-cessfully applied to this problem, including Hidden Markov Models (Belle-garda et al. 1994) and time-delay neural networks (Schenkel et al. 1994). Thedata from the tablet are usually (x; y) coordinates sampled at a constant fre-quency in time, though they are often re-parametrized to be equally-spaced,and represented in terms of arc-length, curvature, and angle, with informa-tion about whether the pen is touching the tablet. A particular problem ofon-line recognition is how to handle delayed strokes | strokes which arewritten after the rest of the word, as in dotting `i's and crossing `t's. Someauthors choose to manage without this extra data; Schenkel et al. recordits existence as a `hat' feature associated with the strokes over which theO�-line handwriting recognition 10



CHAPTER 2. HANDWRITING RECOGNITION
IDENTIFICATION VERIFICATIONRECOGNITION TEXT SIGNATUREON-LINE OFF-LINEHANDWRITING

Figure 2.1: Subdivisions of machine handwriting recognition (af-ter Plamondon and Lorette (1989)).delayed strokes occur, and Bengio et al. (1994a) represent the surroundingvisual context of all strokes so that the dot is seen above the cusp of the `�i'.Although applications and techniques vary considerably, the general tax-onomy of both o�- and on-line handwriting analysis is similar; as is shownin �gure 2.1 and described in the following section. While this thesis is con-cerned with o�-line handwriting recognition, parallel work from on-line re-search is brought in throughout when there is a community of interests, suchas in the modelling of handwriting production or in the application of prob-abilistic recognizers and grammatical constraints.2.1.2 Author identi�cation versus content determinationA second dichotomy in the �eld, orthogonal to the on-line/o�-line divisionis according to the information to be extracted from the handwriting. Fromboth on-line and o�-line data, it may be necessary to determine the author-ship of the writing, the content of what has been written, or both. In bothcases, the e�ects of some variations should be ignored. To determine the au-thorship, di�erences in personal style should be highlighted, to capture whatis characteristic about one person's writing (their idioscript). Conversely, todetermine the content of the writing, the variations due to idioscript shouldbe eliminated and ignored. These two requirements result in very di�erentapproaches. Techniques also di�er depending on whether the author is to berecognized from a signature or from a piece of text.If the author of a piece of text or signature must be determined, the dis-tinction is made between verifying that the author is the claimed author (forinstance in security or banking applications) or merely deciding between apool of known authors, for instance in a writer-adaptive handwriting recog-nition system which uses di�erent parameters for word recognition accordingto the author. The former is the more useful, but of course the harder, prob-O�-line handwriting recognition 11



CHAPTER 2. HANDWRITING RECOGNITIONlem. Plamondon and Lorette (1989) give an overview of handwriting systems,and a thorough review of signature veri�cation systems.2.1.3 Writer independenceThe whole �eld of handwriting recognition is similar to the already well-developed subject of automatic speech recognition, which is often classi�edalong the lines of speaker dependence, vocabulary size and isolated word vs.continuous speech. Analogues to each of these exist in handwriting recogni-tion, and are discussed in this and the following sections.Handwriting styles are extremely diverse, depending both on the patternused to teach handwriting to an individual and on the individual's idioscript(corresponding to spoken accents and idiolects). Because of this, it is moredi�cult to devise a system to recognize many peoples' handwriting than onewhich need only recognize the writing of a single author. Instead of creatinga system which can recognize anybody's handwriting, the problem of multi-ple writers could be tackled by a system which is able to adapt to the currentwriter. Adaptation to the writer's style could be used when recognizing alot of material by the same author, but would be of no use when identi-fying the city names on envelopes. Alternatively, many similar subsystemscould be created, each recognizing one style of handwriting (or one individ-ual's handwriting). Then a global system would select the subsystem whichcorresponded to a particular handwriting sample.2.1.4 Vocabulary sizeThe task of recognizing words from a small lexicon is much easier than froma large lexicon (where words are more likely to be similar to each other).Thus, an important criterion in assessing system performance is the size of thelexicon used. The lexicon will depend on the application of the recognitionsystem. For a general text transcription system, a lexicon of 60,000 words(the number of references in a medium-sized dictionary), would cover about98% of occurrences, and for speci�c domains, such as reading cheque values inwords, or postal towns from envelopes, the vocabulary can be much smaller.Alternatively, it may be necessary for the system to recognize non-words ifthe user is likely to write words not in the lexicon, such as abbreviations,foreign words or names. This issue is discussed again in section 8.4.2.1.5 Isolated charactersSegmentation of continuous speech into its component words has been foundto be very di�cult since in natural speech words run together with no silencebetween. For simpler tasks the recognition is made easier by forcing thespeaker to pause betweenwords. Similarly, in cursive script it is hard to dis-tinguish the boundaries between letters | the di�erence between `�u�i' andO�-line handwriting recognition 12



CHAPTER 2. HANDWRITING RECOGNITION`�i�u' or between `v]' and `^' is very slight. The task can be simpli�ed by forcingthe writer to separate letters (discrete handwriting), to write in capitals or forthe greatest clarity, to write clearly separated capitals in pre-printed boxes.When high reliability is required, the latter constraints may be unavoidablesince they are already necessary to enable human readers to decipher re-sponses on forms. A number of authors have investigated the problem ofrecognizing isolated characters (section 2.3.1), particularly for the problemof reading postal codes. Other authors have researched the recognition ofdiscrete handwriting (`hand print' where lower-case letters are written butmust be separate) or pure cursive script.Similar constraints can be placed on cursive script, forcing the author towrite each word in a separate box, or on a guide line. These constraints aremainly to encourage clarity since the word segmentation problem proves lessdi�cult than segmentation into characters, and less strict constraints couldstill ensure high accuracy segmentation of a page into its component words.Other authors have described methods of segmenting pages into words anddistinguishing between gaps in words and gaps between words (Srihari et al.1993).2.1.6 Optical character recognitionO�-line handwriting recognition has much in common with optical characterrecognition (OCR) | the reading of print by computer. This application re-ceived much attention during the 1980s and successful solutions have beenfound, with commercial packages available for microcomputers which canread type in a variety of fonts and in a certain amount of noise. The historyand current status of OCR are reviewed by Mori et al. (1992) and Pavlidis(1993). In more di�cult situations, these commercial packages are still notsatisfactory. Authors describe problems working with unusual character setsand fonts, poor quality documents or documents in special formats (Bos andvan der Moer 1993; McVeigh 1993). Indeed, it is not clear that OCR is eco-nomically viable in a great many cases when high accuracy is essential (Olsen1993).The reason why the success of OCR has not carried over into handwritingrecognition is the great variability in handwriting. For type in a �xed font,all letters `a' are produced from a single archetype, and thus are very similaron the page, only being corrupted by a relatively small amount of noise informs such as blurring, merging and slight positional variations. The processof handwriting is much more variable in all of these processes and su�ersfrom variations due to other e�ects such as co-articulation | the in
uenceof one letter on another. Also, with type, the symbols are usually distinct(except certain ligatures, as `�', which can be learnt as a separate symbol) sothe problem of segmentation is not present.As a consequence of this the relatively simple techniques used in OCR,such as template matching, are inadequate when presented with the greaterO�-line handwriting recognition 13



CHAPTER 2. HANDWRITING RECOGNITIONvariability in handwriting so relatively little research in the OCR literaturecarries over to handwriting recognition.2.2 ApplicationsThis section reviews some of the more important applications that may beenvisaged for o�-line handwriting recognition. On-line recognition tends tobe for data-entry to obviate a keyboard as in pen computers, but can also beused for special purposes such as using dynamic signatures to verify identity.One potential application in the long term is in using o�-line techniquesfor on-line handwriting recognition. Currently, o�-line performance lags be-hind that of on-line recognition systems, but over the next few years, as thetechnology improves it is likely that methods for both types of handwrit-ing recognition will converge, leading to more general systems and reduceddevelopment costs. This convergence can be seen in the model-based ap-proaches now being used (Pettier and Camillerapp 1993; Doermann 1993),which interpret o�-line handwriting as a path of ink laid down over time,rather than as an image to be analysed independently of its method of pro-duction. The data that can be derived by such algorithms is very similar tothe data available to an on-line recognizer.In the longer term though, it would seem that the convergence is likely totreat both o�-line and on-line words as a two-dimensional image, and not asa one-dimensional stream of trajectory data. The reason for this can be seenby looking at the psychology of reading (chapter 3) | the way people readis by looking at an image, not by analysing the pen path used to producethe writing. Since this involves ignoring the time information, at �rst thisseems to be a poor method of analysing on-line data. However, the informa-tion in handwriting is not transmitted in the timing of the pen trajectory. Itdoes not matter whether the strokes of a word are written quickly or slowly,with changing speed, or even in random order, since it is the appearance ofthe �nished word that matters. Thus, by discarding the time sequence, asource of mis-information is actually avoided. For instance, in current on-line systems, an `o' written clockwise must be recognized di�erently from an`o' written anticlockwise, for in the time sequence information, they appeardi�erent. Someone who writes `���a' may subsequently return to extend the�nal `a' stroke to make the word read `���d', but this change would be lost ona machine relying on the time-ordering of strokes. An o�-line approach ig-nores these factors and simply looks at the �nal position of the strokes, justas a human reader would. This approach also gives a satisfactory solutionto the problem of delayed strokes (section 2.1.1). After these arguments, itmay be seen that, while on-line recognition is better than o�-line now, be-cause the timing information generally is consistent, a good o�-line approachmight ultimately cope with a wider variety of variation. Conversely, the tim-ing information is very useful when creating an author veri�cation system |O�-line handwriting recognition 14



CHAPTER 2. HANDWRITING RECOGNITIONon-line signatures aremuch harder to forge than o�-line signatures, since thedynamics of strokes (with pen both up and down) are harder to forge thanthe �nished appearance.2.2.1 ChequesOne important commercial application for o�-line cursive script is in the ma-chine reading of bank cheques. While the amount in �gures is easier to read,it should be checked that the amount in words is the same, and this can beused for con�rmation where the numerical amount is unclear. Such a systemwould only need to have a small vocabulary (about thirty-�ve words). Givena system that achieved high accuracy without a lexicon, one could check thatthe payee corresponded to the account to be credited. Such a system mightalso include signature veri�cation, bringing about an increase in security withthe reduction in drudgery and time. Given the number of cheques passingthrough the banking system each day, a cheque reading system, even if onlyable to con�dently verify half of the cheques, would save much labour ona tedious and unpleasant job. Cheques which could not be con�dently ver-i�ed by machine would still be processed manually, so accuracy would bemaintained. The project supported by the French post o�ce has the goalof achieving a 1 in 100,000 error rate from the combined recognition of lit-eral and numerical amounts, but permitting 50% of cheques to be rejected formanual sorting (Leroux et al. 1991).2.2.2 From postcodes to addressesO�-line systems capable of recognizing isolated handwritten digits have al-ready been created and installed in many post o�ces around the world, aspart of automatic mail-sorting machines. Given a system to locate the post-code on an envelope (Wang and Srihari 1988; Martins and Allinson 1991;Palumbo et al. 1992) this can be read and used to direct mail automatically.Clearly certain countries such as the USA are at an advantage in having digit-only zip-codes and many researchers have already tackled this problem withreasonable success (section 2.3.1).To process more mail automatically, systems must begin to use the infor-mation contained in the rest of the address. This allows the uncertainty inthe postal code classi�cation to be removed by comparing candidate zip codeswith candidate addresses in a database of all address/zip code combinations,giving more high con�dence classi�cations. Furthermore, for countries withlimited resolution in the postcode, the address can be used to increase theresolution of sorting. U.S. postal service projects aim to use the address todetermine an 11 digit delivery point code which speci�es a single house evenwhen only the �ve digit zip code was provided.Mail sorting can be seen as an ideal application for writer-independenthandwriting recognition, since it has a wide variety of levels of di�culty, fromO�-line handwriting recognition 15



CHAPTER 2. HANDWRITING RECOGNITIONisolated digits written at predetermined locations on an envelope, up to com-plete determination of an address without a postcode. Address recognitionalso admits of a certain amount of error while allowing a large rejection rate.Since there will always be some addresses that are illegible or incomprehen-sible to a machine, a `don't know' answer can be given and the item sent toa bin for human sorting. Further, some mail is already misrouted, so thepostal service is considered fallible and the consequent delays are alreadytolerated.2.2.3 Form processingAnother major application which is now receiving attention is the automaticprocessing of forms. Forms are widely used to collect data from the generalpublic. For anythingmore than the most simple information, for which checkboxes can be used, replies are handwritten in spaces provided. Much of thisinformation must be stored in databases and can be processed automaticallyonce entered into the computer. Data entry is currently the bottle-neck in theprocess. Several authors have written systems to segment the handwrittendata from the pre-printed form and then to transcribe the handwritten data.In some applications, this may be isolated capital letters written in boxes,but work is now moving on to hand print (Breuel 1994; Garris et al. 1994).Although forms must usually be hand printed to keep thewriting as legible aspossible, for human as well as machine processing, cursive recognition wouldstill be useful for processing those forms that have mistakenly been �lled outin cursive script.2.2.4 Other applicationsA variety of other o�ce document processing systems using o�-line hand-writing recognition can easily be envisaged. Already many companies useelectronic document processing systems which manipulate the scanned im-ages of documents rather than the documents themselves. This is clearly avery data-intensive task, but one way of reducing the data storage is to ex-tract the information and store text in ASCII (or perhaps in a richer formatrecording the style of writing). Documents would then be easily searchableand index construction would be made possible. Further possibilities exist inreading handwrittendocuments for the blind or in automatic reading of faxes.Faxed orders could be processed and dispatched automatically and standardenquiries replied to without human intervention. Other faxes could be feddirectly into an electronic mail system, providing at the very least automaticnoti�cation of fax arrival by reading the cover sheet, if not the full text of thedocument.Of course, the advantages of handwriting recognition are not restrictedto English or to the Roman alphabet, though these have probably attractedmost research. In the literature there is a wide range of papers describingO�-line handwriting recognition 16



CHAPTER 2. HANDWRITING RECOGNITIONhandwriting recognition in a multitude of languages. The basic problemsof handwriting recognition are common to all languages, but the diversityof scripts means that very di�erent approaches may be used. For example,Japanese Kanji (Mori and Yokosawa 1988) and Chinese (Lu et al. 1991) char-acters are strongly stroke-based, and characters are easy to segment fromone another, but characters are very complex and there are many classesto distinguish. Arabic and roman alphabets can be cursive, and Arabic andsome Hebrew require accurate recognition of diacritic marks. Govindan andShivaprasad (1990) cite many more languages.2.3 Existing o�-line handwriting recognition systemsThis section reviews some of the o�-line handwriting systems which havebeen detailed in print. To do this it is convenient to classify them, as de-scribed above, into isolated character and cursive script systems. Here onlya brief overview of these systems is given. Speci�c details are provided inlater chapters when particular issues are discussed.2.3.1 Isolated characters or digitsSuen et al. (1980) provide a good review of handwriting recognition up to1980, concentrating on isolated character recognition | which had been thefocus of research until then. They describe a variety of feature based ap-proaches and divide these into global features (templates or transformationssuch as Fourier, Walsh or Hadamard); point distributions (zoning, moments,n-tuples, characteristic loci and crossings and distances) and geometrical ortopological features. The latter were, and have remained, the most popu-lar techniques, and involve separate detectors for each of several types offeatures such as loops, curves, straight sections, endpoints, angles and inter-sections. For instance, Impedovo et al. (1990) use cross-points, end-pointsand bend-points as their features, coding these as to their location in threehorizontal and three vertical zones within each character. The encoded char-acters are then identi�ed using a decision tree classi�er. Elliman and Banks(1991) also use features (end-point, junction, curve and loop) each of whichis associated with a numerical quantity, such as curvature or length, beforebeing decoded in a neural network (a feed-forward neural network or anadaptive feedback classi�er).Nellis and Stonham (1991) and Hepp (1991) both use sets of global mor-phological features created by separately examining the left, right, top andbottom edges of each character. The pro�le of the character from each edgeis coded as a separate feature for classi�cation by a neural network.Le Cun et al. (1989) and Fukushima (1980) take the approach of feedinga normalized bitmap image of the character to be recognized into their net-works (multi-layered perceptron and neocognitron respectively). Both theseO�-line handwriting recognition 17



CHAPTER 2. HANDWRITING RECOGNITIONnetworks are constructed from layers of identical feature detectors, whichbecome more specialized and less location speci�c deeper in the network,until the outputs of the �nal layer correspond to characters, independent oflocation in the image.A host of other authors have tackled the problem of recognizing isolateddigits or characters in the last few years (Hepp 1991; Idan and Chevalier 1991;Impedovo et al. 1990; Lanitis et al. 1993), particularly since the increas-ing availability of data has made this a standard test problem for testingpattern recognition methods (Simard et al. 1993; Hinton et al. 1992; Boser1994). Isolated digit classi�ers have now become so good that research isconcentrating on reading whole zip codes where the digits are often touching(Fontaine and Shastri 1992; Kimura and Shridhar 1991; Matan et al. 1992),and �nding optimal combinations of multiple classi�ers now seems a morepromising way of reducing error rates than �nding better classi�ers. Huangand Suen (1993) cite several papers taking this approach. Performance is nowbeing limited by the number of digits which are entirely ambiguous and couldnot be con�dently classi�ed by human readers.2.3.2 O�-line cursive scriptThe problem of o�-line cursive script recognition has received little atten-tion until recently, partly because of the di�culty of the problem, but alsobecause of the lack of data. Simon (1992) and Suen et al. (1993) give briefreviews of script recognizers, but the best review is probably by Lecolinetand Baret (1994). Simon makes the distinction between the segmentationapproach and the global approach, according to whether words are identi�edby recognizing individual letters or by recognizing words as a whole. In fact,very few authors take the latter strategy. Plessis et al. (1993) use a holisticmatch, but only to reduce the size of their lexicon before using a more de-tailed recognition method. Lecolinet and Crettez (1991) use the terms explicitsegmentation and implicit segmentation according to whether an attempt ismade to divide theword into separate characters and recognize these individ-ually, or if the segmentation is a by-product of a recognition process workingon a di�erent unit of writing. Both approaches use strong evidence fromwell-written parts of words, together with a restricted lexicon, to recognizewords which are partially badly written.All the authors described below incorporate some form of preprocessingto normalize and clean the data. Some preprocessing methods are describedin chapter 5. In each case, a recognition strategy then hypothesizes charac-ter or word identities, and because exact recognition is very di�cult, all theapproaches use a lexicon to constrain the responses to a known vocabulary.Perhaps the most successful o�-line handwriting recognition system isthat of Kimura et al. (1993b,1993a) who have created a system for readingcity or state names in addresses. These authors take a dual approach, witha �rst, quick classi�cation to reduce the lexicon size, followed by a more ac-O�-line handwriting recognition 18



CHAPTER 2. HANDWRITING RECOGNITIONcurate second classi�cation using di�erent techniques. The �rst stage �ndsa rough explicit segmentation and each segment is classi�ed as a letter. Thesecond stage �nds a di�erent explicit segmentation by splitting the word intodisjoint boxes and joining the boxes together using dynamic programming toform complete characters. These are then passed to a character classi�er.These authors report results of 91.5% recognitionwith a lexicon of 1000 wordson the CEDAR database of words segmented from addresses in the U.S. mail(Hull 1993).Cheriet and Suen's (1993) approach is also letter-based. However, theirapproach is to extract a number of key letters from each cursive word | par-ticularly the initial letter and those clearly identi�able by ascenders, descen-ders or loops. For a small vocabulary task (reading cheques) as describedin their paper, identifying these key letters might be su�cient to identifymost words, but the authors propose their techniques as a way of �ltering,to reduce the number of words in the lexicon of possible matches.Papers by Srihari and Bo�zinovi�c (1987; Bo�zinovi�c and Srihari 1989) takean explicit segmentation approach, but here each segment need not corre-spond to a character. They �nd presegmentation points which include allthe boundaries between characters, but also split some characters into twoor more pieces. They then �nd features (16 in all, including dots, curves,strokes, loops and cusps) within the segments by a series of event detectorsand use the features to construct letter hypotheses according to statistics offeature occurrences gathered during training. Words are hypothesized via astack method, where the most likely pre�xes are stored and expanded untilthe word end is reached. After the �rst iteration of this procedure, the stackcontains all the hypotheses for the �rst letter in order of likelihood. The top(most likely) hypothesis is then expanded by looking at what letters couldfollow. The resultant two-letter sequences are put onto the stack, to be ex-panded when they are the most likely sequences. At the end of the word,the lexically correct word that is highest on the stack is chosen as the bestmatch.Srihari and Bo�zinovi�c conducted a number of experiments, using di�er-ent writers and di�erent lexica (780 and 7800 words). Testing on a single-author database of horizontal, non-slanting writing, a 77% recognition ratewas obtained on the small lexicon, 48% on the large. A second single-authordatabase yielded a 71% recognition rate on the smaller lexicon.Yanikoglu and Sandon (1993) take a similar approach. They �nd possiblecharacter segmentation points and attempt to classify segments or groupsof up to three segments with a neural network classi�er trained on isolatedletters. Incorrect segmentations tend to get lower classi�cation scores thanwhen a letter is correctly segmented, and when the scores are combined ina hidden Markov model, the best hypothesis for the groupings of segmentsand their identities is found. Results of 70% for single-author cursive wordrecognition are quoted for a lexicon of 30,000 words.Edelman et al. (1990) have developed a handwriting reader which reliesO�-line handwriting recognition 19



CHAPTER 2. HANDWRITING RECOGNITIONon the alignment of letter prototypes. Here, anchor points (e.g. endpoints;turning points at the top, bottom, left or right of a character) are found inthe test word and these points are used to match the word against a set ofprototype curves, coded as splines, which can be composed into lower-casecharacters. The system is hand-designed and is not trained automatically.Using a 30,000 word lexicon, these authors obtained an 81% recognition rateon the training set and around 50% on test sets by three authors. The stressof this system is on recognition without a lexicon, however, and recognitionrates of 8{22% are given for three authors including the author whose writingwas used to develop the system.The problem of reading the amount on cheques (section 2.3.2) has beentackled by a number of authors in the problem posed by the French posto�ce. The task here is to recognize amounts written (in words) on postalcheques and to use these to verify the amounts written in �gures. Moreauet al. (1991) identify a few characteristics of the cursive words and matchthese to a set of reference words with Dynamic Programming. The identi�edwords are used togetherwith a grammar to verify the amount in �gures. Witha 60% rejection rate, the error rate achieved is 0.2%. Paquet and Lecourtier(1991) reduce each word to a series of curves which they match to examplesin a lexicon. They achieve 60% correct on the 50% of words which are well-segmented and later (Paquet and Lecourtier 1993) achieve an error rate of59% when rejecting 9.5% of words. Leroux et al. (1991) take two parallel ap-proaches | one is to recognize the word as a whole, by �nding a few featuresand comparing with reference words. The second is a letter-by-letter ap-proach where the desire is to recognize only some of the letters, and to usethis information to restrict the lexicon. Their system correctly identi�es 62%of words. The system described by Simon (1992) achieves a 0.15% error ratewith a reject rate of 24% using a 25 word vocabulary.
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Chapter 3Psychology of readingThere is an art of reading as well as an art of thinking and an art ofwriting. D'Israeli.Before attempting the machine recognition of handwriting, it is worthwhileconsidering the way that people read and write. Considering human read-ing may lead to an increased understanding of the transfer of informationthrough the medium of handwriting, so that it can be seen which processesplay a useful role, and which are merely epiphenomena. If it can be un-derstood what information people use to recognize handwritten words, thena clue is found as to what features might be useful for a machine recogni-tion system. Other features are likely to be poorly preserved since they playno useful role. Understanding handwriting production may similarly giveinsights as to which features of handwriting are representations of the infor-mation and which mere artefacts of the generation process.A large body of psychological data has been gathered on the processesinvolved in reading type, some of which is applicable to cursive script. Tay-lor and Taylor (1983), Downing and Leong (1982) and Rayner and Pollatsek(1989) give thorough reviews of the psychology of reading. Most research sofar has concentrated on reading individual letters or words out of context. Itcould be argued that this gives little indication of the processes occurring innormal reading where many words are visible and it is the text as a whole,not individual words, that is important. However results are hard to provein such a natural environment with many variables, and it is only under re-stricted experimental conditions that hypotheses can be rigorously tested.Research into reading, as in much of psychology, relies heavily on observ-ing what errors are made under di�cult conditions. One technique is the useof tachistoscopes to 
ash a word in front of a subject for a very short time fol-lowed by a patternedmask to inhibit iconic memory, which otherwise allowsthe subject to preserve an image of the word mentally for an uncontrolledperiod of time.O�-line handwriting recognition 21



CHAPTER 3. PSYCHOLOGY OF READING3.1 Reading by featuresAs will be seen later, many approaches to handwriting recognition rely ondetecting features in the writing, such as the strokes which go to make upindividual letters. Hubel and Wiesel (1962) describe the processes early inthe visual cortex. The complex cells that they discovered code the presenceof bars and edges and provide a compact representation of lines which isparticularly appropriate to the representation of writing and print. A numberof authors have sought to determine what higher-level representation mightbe used speci�cally for letters.Bouma (1971) investigated the features which people use to recognize iso-lated characters by examining the confusions between letters presented ei-ther at a distance or for a short time, eccentrically in the subject's �eld ofview. Bouma uses the errors made by subjects to identify groups of confus-able, or `psychologically close', letters. Bouma's classi�cation is shown intable 3.1.Outer contour Bouma shape Code LettersShort inner parts and rectangular envelope 1 a s z xround envelope 2 e o coblique outer parts 3 r v wvertical outer parts 4 n m uTall ascending extensions 5 d h k bslenderness 6 t i l fProjecting descender 7 g j p q yTable 3.1: Bouma shapes.Shape type Number of words sharing the same shape1 2 3 4 5 6 7 8 9 10+Outer contour 1389 250 102 45 23 20 16 9 7 36Outer contour +initial 2301 313 77 34 14 7 2 3Bouma shape 3201 83 20 3 1Bouma shape + initial 3340 49 2Table 3.2: Word discrimination using word shape measures onthe text of this thesis.Using these classes, words can be encoded according to their shape, so`����' would become 527, but so also would `�bo�' which is seen to be similarin shape. Taylor and Taylor used these Bouma shapes for a study on the textof their own book. Table 3.2 shows a similar experiment on the text of thisO�-line handwriting recognition 22



CHAPTER 3. PSYCHOLOGY OF READINGthesis. The words are classi�ed according to each of four shape descriptiontechniques, and the number of words of each shape is counted. The outercontour is a coarser coding than the Bouma shape, simply classifying lettersas short, tall or projecting. The outer contour is enough to specify 1389 of the3444 words uniquely, but there are 36 shapes shared by ten or more wordseach. If the �rst letter is known, the ambiguity is further reduced. TheBouma shape, having more classes than outer contour, gives more uniqueshapes | 3201 words are uniquely labelled.This study shows that, in conjunction with a lexicon of permitted words,a few simple features can identify most words, without the need to recog-nize the individual letters. Haber and Haber (1981) have carried out similarwork into the e�ectiveness of letter shape for reading, and also give a deci-sion tree which might be used to distinguish the letters of the Helvetica fontby observing only a limited set of features. Eldridge et al. (1984) investi-gate the variability of some handwriting features comparing variation in anindividual's handwriting with that between individuals.McGraw et al. (1994) further investigate the features that might be usedin representing characters. Although their experiments are conducted withmachine-generated letters made up of straight line segments, they investi-gate the recognition of letters at the limits of class-boundaries, so their workis of relevance to handwriting recognition. They suggest that letter recogni-tion is carried out by �nding word features that �ll roles in internal modelsof letters. Thus a letter `b' could be described as a loop with a short strokeabove and to the left, or as a tall stroke with a curved section joined at thelower right. These authors do not consider the possibility of overlappingfeatures which might characterize the letter as well if not better. For in-stance, a `b' could also be described as a tall stroke overlapping a loop to theright. They make the important point that the higher-level features used forreading are not likely to simply arise bottom-up from the visual processingsystem, as Hubel and Wiesel cells do, but to be de�ned top-down depend-ing on the classes to be distinguished. This depends in turn on the writingsystem to be read, just as when learning a new language the boundaries be-tween phonemes have to be re-learnt according to the di�erent distinctionsand groupings made in that language.Many studies have also beenmade into the processes involved in writing.If an accuratemodel of these processes can be found, then it could be used forrepresentation of handwriting in a compact form, and for recognition. Alimiand Plamondon (1993) discuss a variety of models for handwriting genera-tion, and Abbink et al. (1993) and Singer and Tishby (1993) have used theHollerbach (1981) model for modelling handwriting for recognition. Singerand Tishby derive a very compact code which represents the handwritingbut also allows the easy removal of slant, slope and other variation, makingthe writing more legible. Teulings (1994) discusses feature extraction fromon-line cursive script. As yet these approaches have usually been applied toon-line script where the pen trajectory is accurately known. The static natureO�-line handwriting recognition 23



CHAPTER 3. PSYCHOLOGY OF READINGof o�-line writing does not lend itself to these approaches, thoughDoermann(1993) shows that o�-line script can be considered in this way. However itseems that, while compact representations can be found using the model-based approach, reading is a visual process and dynamic approaches will al-ways fail to represent data such as the dots on a letter `i' appropriately, forhere it is important where the dot occurs, not when or how.3.2 Reading by letters and reading by wordsOne of the fundamental �ndings of reading research is the importance ofrecognition of words as single entities and not as the conjunction of theircomponent characters. Taylor and Taylor cite work by Kolers & Magee,whose experiments involved training subjects on inverted text (where the let-ters are all upside-down). They trained two groups | one to read words andone to name letters| then each groupwas switched to the other task. No ev-idence was found that learning one task improved performance in the other,thus one may conclude that \relatively 
uent reading requires familiaritywith the shapes of words, but not with the letters in those words."(p.195)Further evidence for reading by words rather than individual letters isgiven by the word superiority e�ect. This is the term used for the phe-nomenon that a letter is better recognized (more frequently recognized cor-rectly when presentation time is short enough to induce errors) when pre-sented as part of a word thanwhen presented either on its own or surroundedby arbitrary characters in a non-word (for instance in Reicher's experimentsdescribed by Rayner and Pollatsek p.77).It is interesting to note the work by Yamadori (1975) and Sasanuma (1984)which shows that damage to certain areas of the brains of Japanese read-ers can severely impair reading of Kana (syllabic) script whereas Kanji (mor-phemic) script is much less a�ected. This shows that di�erent brain pathwaysmust be used for the two script types and indicates that the mechanism ofreading is more complex than it might at �rst appear. Downing and Leongdiscuss the possibility of phonological, visual or both pathways for index-ing an internal lexicon, and the evidence seems to suggest that people useboth a coding of the sounds of words and a coding of the visual image whenrecognizing words while reading.Taylor and Taylor propose a reading mechanism with three paths:Whole-word process This is a rapid process taking perhaps 50-100ms whichis based only on the pattern of the word as a whole, or the �rst half-dozen letters of longer words.Letter-based process From 50ms after a word is presented, the individualletter identities are becoming available. (This could be understood as aprogressive increase in the frequency of the �lter used as suggested inwork by Marr (1982)). Outer letters are identi�ed �rst, andmay be usedO�-line handwriting recognition 24



CHAPTER 3. PSYCHOLOGY OF READINGto adjust the �rst hypothesis of the whole-word process, or to generatea new one. These authors also suggest that word units (pre�xes andsu�xes) may be recognized as single items.Scan-parse process This process is the slowest and uses the letter identitiesto produce a phonetic version of the written word, which can be usedas additional evidence for the word identity.3.3 Lexicon and contextReading relies on the use of a lexicon of words. Words that are written un-clearly can often only be identi�ed because it is known that they must rep-resent a real word, rather than one of the other letter strings that might be`read into' the cursive word. The word of �gure 3.1a could be interpretedin many ways, but a reader would generally opt for `minimum' because thatis a word. Psychological studies have veri�ed the existence of some form ofinternal lexicon, though the form that this takes is unclear. Nevertheless thelexical decision task is an important tool in experiments. For this the exper-imenter measures the time taken to determine whether a string of letters isa word or not. (a) (b)Figure 3.1: Word ambiguity. (a) is identi�ed by recognizing thetwo `i's and knowing that the word must be in the lexicon. (b)is still ambiguous unless context is supplied.Context is also signi�cant. The correct interpretation of the word `m�i�n-�i�m�u�m' is made even more likely in a passage about optimization. (But an-other might be understood in the context of a discussion of non-words inthe psychology of reading.) Context is also important in choosing betweenvalid word hypotheses. The word in �gure 3.1b could equally well be iden-ti�ed as `clump' or `dump' or even `jump', and it is only from the meaning ofsurrounding words that the two can be distinguished. Grammar can be su�-cient to distinguish ambiguous words, by determining from the surroundingcontext whether a word is a verb or a noun, or whether a verb is transitiveor not. To implement this discrimination in an automatic system, some lan-guage model must be introduced to determine legitimate word sequences.Language models are discussed in section 8.4.O�-line handwriting recognition 25



CHAPTER 3. PSYCHOLOGY OF READINGContext is important for the skilled reading of passages of text, but is notconsidered by Rayner and Pollatsek (p.62) to be an important in
uence onthe reading of the words within that text. However, the results quoted byEdelman et al. (1990) show how di�cult it can be to identify handwrittennon-words, thus highlighting how important a restricted lexicon and contextare. \In comparison, people recognize correctly 96.8% of handprintedcharacters [Neisser and Weene 1960], 95.6% of discretized hand-writing [Suen 1983] and about 72% of cursive strings (see [Edelman1988] appendix 1)."Edelman's (1988) experiment consisted of presentingnon-word cursive stringsto four subjects. The subjects had to type their reading of the cursive string,with no time limit to the responses, and allowing multiple guesses. Edelmanfound the error rate consistent with the error rate for individual letters.The problem of handwriting recognition is complicated by the fact thatmuch handwriting is intended for use only by the author. When people speak,it is invariably with the purpose of being understood by someone else, andthat person is there to query any ambiguities immediately, or to indicateif the speech is di�cult to understand for whatever reason. There is feed-back of any errors that are made, so behaviour can be corrected, with theaim of transferring information most e�ectively. On the other hand, writ-ing is usually read much later than it is created, and this feedback loop doesnot exist. Writing not legible to others is easily accepted by an author whoalready knows what is written. Particularly if a writer is used to wordpro-cessing documents for consumption by others, notes written for personal usemay be written in a way that other readers cannot understand. Words maysimply become illegible mnemonics comprehensible only to the author whoknows the context in which they were written. However, it is just such notesto one's self that pen computers are designed to store and, it is claimed,recognize | an exacting if not impossible task.3.4 SummaryFrom the work that has been reviewed in this chapter, it is possible to extracta number of important principles which can be used for guidance in the designof a machine to read cursive script. While following psychological studiesmight not yield the easiest nor the best method of tackling this problem,being aware of how people read gives an indication of the operations of thebest reading machine known. Those factors which are seen to be importantare summarized below, and taken into consideration in the design of thehandwriting recognizer in the subsequent chapters.First, in the recognition of written forms, it seems that beyond the simplerepresentational level of the Hubel and Wiesel cells, people recognize lettersO�-line handwriting recognition 26



CHAPTER 3. PSYCHOLOGY OF READINGby observing higher-level features. Though the exact features are unknown,it seems that they correspond to such elements as loops, curved strokes andstraight line segments. If these features are how information is conveyed be-tween people in handwriting, then they would be a good choice of feature fora machine handwriting recognizer, as they are likely to be invariant betweenwriters and under di�erent conditions. Further, while people learn to readby recognizing individual letters, and this might be necessary for new or longwords, skilled readers take in whole words at a time. It can also be seenthat reading is made possible only by knowing that most words will fall intoa prior vocabulary, and by using the context surrounding words to overcomeambiguity.

O�-line handwriting recognition 27



Chapter 4Overview of the systemPolonius: What do you read my lord?Hamlet: Words, words, words. Shakespeare. Hamlet.Having reviewed the literature, it is apparent that until recent years therehas been a dearth of research and publications on the problems of o�-linerecognition, but that there is great potential for applying successful systems| particularly in the banking and postal �elds. Recently the situation haschanged, but there still remains a signi�cant gap between the performanceof research systems and the accuracy required for practical implementations.To attempt to �ll part of this gap, the system described in this thesis hasbeen developed to carry out all the operations of o�-line handwriting recog-nition, from scanning to producing a machine-readable document of recog-nized words. This chapter brie
y describes the whole system and then detailsa number of issues relating to the complete design, including a description ofthe databases used for experiments. Subsequent chapters present the otheraspects of the system in more detail.4.1 Summary of parts Duration modellingHMMRecurrent networkRecognitionDiscrete HMM Language modellingParametrizationSegmentationScanning LikelihoodsEncoded word WordSingle word imagePage of handwriting NormalizationFigure 4.1: A schematic of the recognition system, showing themain processes which must be carried out to identify the wordsin a handwritten document.The system described in this thesis can be conveniently divided into the samebroad sections as are found in most other handwriting recognition systems,O�-line handwriting recognition 28



CHAPTER 4. OVERVIEW OF THE SYSTEMsuch as those described in chapter 2. The system begins with data acquisitionand proceeds in a bottom-up manner, processing smaller amounts of data atsuccessively higher levels of representation, to arrive at a word identity whichcan be output in ASCII code.To capture data from a handwritten document, in general some sort ofscanner is used rather than a camera, to ensure controlled conditions, es-pecially of lighting. A variety of scanners is available, from hand-held unitsfor reading a small amount of material, through 
at-bed scanners and ma-chines with sheet feed or page-turning, up to postal machines with a veryfast throughput.The scanned image must be segmented into separate words (section 4.2)and then a series of image processing operations is carried out to normalizethe image, as described in the �rst half of chapter 5. The latter half of thatchapter discusses the best way of representing the useful information con-tained in the image. That chapter and the next also discuss the derivationof handwritten features from the image, as a succinct way of describing theshape of the handwriting.Chapter 7 then discusses how data probabilities can be estimated from theencoded feature information. Three di�erent pattern recognition techniquesare described together with the trainingmethod for each. From each of thesethe probabilities are combined in a hiddenMarkov model system (chapter 8)which �nds the best choice of word for the observed data. This system allowsthe natural incorporation of prior information about the lengths of letters andabout a restricted list of permitted words, about the grammar of a languageand potentially even the semantic context of the writing.4.2 Image acquisition and corpus choiceThe success of any decipherment depends upon the existence andavailability of adequate material. How much is needed depends uponthe nature of the problem to be solved, the character of the material,and so forth. John Chadwick. The Decipherment of Linear B.The system is designed to process data captured from a scanner, but forresearch purposes it is convenient to work on a �xed database stored ondisk for repeatability and speed. Ideally work would have been conductedusing a standard database to produce results which would be easily com-parable with the results quoted for other systems. In the speech recogni-tion community the production of standard databases has made availablelarge corpora of speech which individual institutions could not collect them-selves. This has enabled reliable comparison between di�erent recognitionsystems and encouraged competition, albeit tending to narrow the goals ofresearch towards performing well on the standard tasks. However, at thestart of this research there was no o�-line cursive database available, soO�-line handwriting recognition 29



CHAPTER 4. OVERVIEW OF THE SYSTEMthe only solution was to collect a new database. Subsequently the CEDARdatabase (Hull 1993) has been released, but it is designed speci�cally forthe task of isolated word recognition from address blocks, and introduces anumber of special problems which did not fall into the already wide scopeof this research. These problems include having to deal with overlappingwords and having to remove guide lines, envelope patterns and other clutter,though work has been done to remove much of this noise (Doermann 1993;Kimura et al. 1993b).In the database collected for this research, words were written by a singleauthor on a plain, white A4 sheet. Thewriter used a black �bre-tip penwhichgave clear strokes with sharp edges, but the strokes are wide and overlap.The sheets, each containing 150{200 words, were then scanned on a 
at-bedscanner at 300 dots per inch resolution, in 8 bits (256 levels of grey) to produceone �le per page. Each page takes about 8Mbytes of storage in TIFF (Aldusand Microsoft 1988) format, when not compressed.The next task is to segment each page into its component words. Underreal conditions, this problem can be di�cult. However, there exist publishedtechniques for performing this operation (Garris et al. 1994; Yanikoglu andSandon 1993) and it has not been studied in detail in this work. For thisdatabase each word was written within a wide border of white space to fa-cilitate segmentation. The algorithm for segmentation is thus very simple,merely looking for blank horizontal lines to partition between lines of text.Within lines of text, the algorithm looks for long horizontal gaps betweenwords. If the algorithm fails, the automatically determined bounding boxesaround words can be manually adjusted using a graphical tool developed forthe purpose. Figure 4.2 shows a section of a page of data with the automaticsegmentation displayed. Words are automatically labelled by alignment withthe machine readable �le which was used to prompt the writer.
Figure 4.2: A section of a page of the database, showing thebounding boxes detected automatically.Initial tests were carried out on a database of the numbers written out aswords (`one' to `nineteen', tens from `twenty' to `hundred', plus `thousand',`million' and `zero'). These words were chosen because they form a corpususeful for an application such as cheque veri�cation, but the small vocabularyO�-line handwriting recognition 30



CHAPTER 4. OVERVIEW OF THE SYSTEMenabled a reasonable study to be made in a short time and facilitated datacollection. Ten exemplars of each of these words were taken: three to serveas a training set and four as test data (a test set of 124 images), plus a furtherthree to be used as a validation set (see section 7.1.3).Subsequently, a larger data set was created by the collection of transcriptsof the Lancaster{Oslo/Bergen (LOB) corpus (Johansson et al. 1986). Thisis an extensive corpus of modern English collected from a wide variety ofsources such as newspapers, novels and non-�ction books. The corpus as awhole contains a million words with a vocabulary of around 40,000 words.Writing out sentences from this corpus gives larger data sets permitting bet-ter training of the recognition system and laying the foundations for futurework on language modelling to improve the results, based on work alreadyconducted, for instance by Kuhn and de Mori (1990). The LOB handwrit-ten database contains 2360 training images, 675 validation images and 1016test images from words written by a single author. Initial transcriptions con-sisted entirely of lower case words, but subsequent additions to the databasehave included punctuation and capital letters. The vocabulary of the tran-scribed corpus is 1334 words, and results quoted use this lexicon size exceptwhere stated otherwise. The size of this database is su�cient for training forsingle-author recognition, but more data would be necessary to tackle thewriter-independent task.It is hoped that more standard databases of o�-line data will becomeavailable as more research is conducted in the �eld. To encourage this and toencourage cross-testing on multiple data sets, the database described abovehas been made publicly available.14.3 A note on resultsTo provide a measure of the worth of each of the techniques presented, ex-periments are described throughout the thesis and the corresponding resultsare presented. Since there is usually no direct, objectivemeasure of the e�ec-tiveness of one technique compared with another, two techniques are oftencompared by training a complete system for each of the possible conditionsand testing on an unseen test set. The �nal results obtained are percent-age error rates showing the proportion of words in the test-set incorrectlyclassi�ed by the whole system. These error rates are used to compare twotechniques or determine an optimum parameter value by holding all othervariables constant. The standard experimental conditions for each part of thesystem are made clear in the following chapters as those parts are described(and are summarized in section 8.4.3), but many results are presented beforethe whole system has been explained in detail. For comparison, since thestandard test vocabulary is 1334 words, random guessing would give a 99.9%1A sample is available by anonymous ftp:ftp://svr-ftp.eng.cam.ac.uk/pub/data/handwriting page image.tar.gzO�-line handwriting recognition 31



CHAPTER 4. OVERVIEW OF THE SYSTEMerror rate, and guessing the most likely word (`the') all the time would givea 93.2% error rate.Because the training of recurrent networks is found to be dependent oninitial conditions, results are subject to a certain amount of variation. Wherepossible, several networks have been trained under conditions identical ex-cept for the initial values of the weights. From these runs, an estimate �̂ ofthe mean percentage error rate can be obtained, as can �̂, the standard errorof the mean. However, the training of recurrent networks is very compu-tationally intensive, so it has not been possible to train multiple networksfor every experiment. In experiments where only one run has been carriedout, standard errors estimated from multiple runs under similar conditionsare quoted. Where two techniques are to be compared, statistical tests arecarried out. The one-tailed Student's t-test is used for paired data, for in-stance when several networks are tested under two di�erent conditions, todetermine if the di�erence in the mean error rate is signi�cant. The statisticof the test is denoted T (degrees of freedom) and the relevant tabulated valueis shown as tsigni�cance(degrees of freedom).Training and testing times are quoted in the following chapters. For com-parison purposes, all times are given as the equivalent for a Silicon GraphicsR4400 Indigo with 150MHz clock. All times are approximate, and test timesare given as the average time per test word over the whole test set.4.4 The remaining chaptersThe next chapter describes the techniques used to normalize the word image,and the coding schemes used to represent the data for recognition. Finally,it describes the simple features which can be extracted from the skeleton ofa handwritten word. Chapter 6 describes a more complex technique whichcan be used to extract larger scale features. The recognition systems whichoperate on the encoded data to derive character probability estimates aredescribed in chapter 7, and chapter 8 explains the system used to make thechoice of the best word, given these estimates.Finally, chapter 9 draws together the results of the previous chapters,makes an assessment of the whole system and points to the possibilities forfurther work building on that described in this thesis.
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Chapter 5Normalization and representationL'�ecriture est la peinture de la voix. Voltaire.The system described in this work is designed to identify a handwrittenwordwhen presented with a scanned image. A system could be envisaged whichidenti�ed the word directly from the image presented, but the task of therecognition system is greatly simpli�ed by preprocessing the image, organiz-ing the information and representing it in a more accessible manner. Theprocessing to be carried out before recognition consists of two major parts| normalization and representation. The �rst of these attempts to removevariations in the images which do not a�ect the identity of the word, andthe second then expresses the salient information contained in the image ina concise way, suitable for processing by a pattern recognition system. Thischapter describes the normalization operations performed on each image bythis system.5.1 NormalizationCursive script varies in many di�erent ways. In addition to the peculiari-ties of an author's idioscript, which mean that one writer can be identi�edamong thousands, there are the peculiarities of writing in di�erent situa-tions, with di�erentmedia and for di�erent purposes. In the recognition taskto be solved here, all this variation is irrelevant and serves only to obscurethe identities of the words, although in other applications, such as authorveri�cation, this `noise' may be of most interest. One way of reducing thevariation is to identify certain parameters of the handwriting that may varyto give a di�erent appearance to a word. Then, a procedure must be deter-mined to estimate each of these parameter values from the sample word (orseveral) and �nally another procedure must be found to remove the e�ectsof the parameter from the word. The most obvious parameters include thefollowing:O�-line handwriting recognition 33



CHAPTER 5. NORMALIZATION AND REPRESENTATIONHeight The height of letters will vary between authors for the same task, andfor a given author for di�erent tasks (for instance dependent on the sizeof guidelines given, or the amount of text to be �tted into a space);Slant The slant is the deviation of strokes from the vertical. This tends to bea writer-dependent parameter, but varies between words too;Slope This is the angle of the base line of a word if it is not written horizon-tally. Even when given a horizontal guide line, authors will write all orsome words with non-horizontal bases. Often this can be assumed tobe straight, but in extreme cases curved, `hill-and-dale' base lines maybe observed (Srihari and Bo�zinovi�c 1987:p.229);Stroke width This depends on such factors as the writing instrument used,the pressure applied and the angle of the writing instrument as well asthe paper type;Rotation If the page is skew in the scanner, then all thewords will be rotated,by a process independent of slant and slope which are shear processesin the production of the handwriting. In this system though, rotationis assumed to be small and is removed by a combination of slant andslope-correction transforms.
Correction BaselineEstimation CorrectionSlant Smoothing andThresholding

Parametrization TransformDistanceSnakeFittingSlope x�0 Thinning
Word ImageScanned

Skeleton
Histogram

Figure 5.1: A schematic of the preprocessing operations neededto normalize the image before it is encoded.The system described here incorporates normalization for each of thesefactors, reducing each image to one consisting of vertical letters of uniformO�-line handwriting recognition 34



CHAPTER 5. NORMALIZATION AND REPRESENTATIONheight on a horizontal base line and made of one-pixel-wide strokes. Fig-ure 5.1 shows a schematic of these normalization operations, which are ex-plained in this chapter. The normalization process described in the followingsections is illustrated for a sample word in �gure 5.3.5.1.1 Base line estimation and slope correctionThe character height is determined by �nding the intuitively important lineswhich are shown running along the top and bottom of lower case letters in�gure 5.2 | the upper and lower base lines respectively (using the termi-nology of Srihari and Bo�zinovi�c), with a centre line between the two. Withthese lines, the ascenders and descenders which are used by human readersin determining word shape (section 3.1) can also be identi�ed.
Horizontal density histogramVertical densityhistogramUpper base line AscendersDescendersLower base lineCentre line

Figure 5.2: Histograms, centre line and base lines.The heuristic used for base line estimation consists of the following steps:1 Calculate the vertical density histogram by counting the number of blackpixels in each horizontal line in the image. Vertical and horizontal den-sity histograms are shown on the right and bottom edges of �gure 5.2.2 Reject the part of the image likely to be a hooked descender (as in theletters `gqy'). Such a descender is indicated by a peak in the verticaldensity histogram. The minimum in the histogram above this point isfound and the image is cleared from that point downwards.3 Find the lowest remaining pixel in each vertical scan line.4 Retain only the points around the minimum of each chain of pixels.5 Find the line of best �t through these points (�gure 5.3b).6 Reject the outlying points and calculate the new line of best �t. This isnow considered to be the base line of the character.Given the estimate of the lower base line, the writing can be straightenedto make the base line horizontal. This straightening is carried out by applica-tion of a shear transform parallel to the y axis (�gure 5.3c). Slope correctionO�-line handwriting recognition 35



CHAPTER 5. NORMALIZATION AND REPRESENTATION
(a) Initial image (b) Slope estimate

(c) Slope corrected (d) Canny edges and slant estimate
(e) Slant corrected (f) Skeletonwith base line estimates.Figure 5.3: Successive stages in the normalization.O�-line handwriting recognition 36



CHAPTER 5. NORMALIZATION AND REPRESENTATIONcan be carried out on whole lines to remove rotation in the scanned imageor skewed writing, and then carried out on individual words to remove localtransformations. Next, the height of the lower base line can be re-estimated,under the assumption that it is now horizontal. The upper line may be re-estimated using a similar procedure, though this is found to be less robust,because of the presence of `�' strokes, which are harder to separate from thebody of text than are descenders, as Bo�zinovi�c and Srihari (1989) observe.5.1.2 Slant correctionBo�zinovi�c and Srihari (1989) detail a complex method for letter slant correc-tion. This involves isolating areas of the text which are near-vertical strokesand estimating the slant of each of these. This procedure was found to bevery sensitive to the thickness of the writing and is unreliable when the writ-ing is thinner than expected. However, by making an estimate of the writingthickness from the distance transform (see section 6.1) and using an iterativetechnique, a more stable version of this algorithm has been developed.Bo�zinovi�c and Srihari's algorithm commences by eliminating all horizon-tal rows in a word which contain horizontal strokes. These are identi�ed asany rows which contain long runs of black pixels. The maximum number ofconsecutive black pixels which can be permitted before a line is eliminated isa parameter which must be speci�ed. After each such row is eliminated, theremaining image is in horizontal strips, some of which are too narrow to useand are eliminated. (A second, less critical parameter is the smallest heightof horizontal strip which can be used to estimate the slope.) The remain-ing strips are divided into boxes containing separate, near-vertical strokes ineach of which the centroids of the upper and lower halves are determined,and the slant of the line between the two is calculated. Averaging the slantsacross all such strokes gives an estimate of the average overall slant of theword. The slant is corrected with a shear parallel to the x-axis. Figure 5.3eshows a slant-corrected word.The modi�cation which has been found to stabilize this algorithm is tosplit the word into strokes for a range of values of the run-length param-eter and to use the value which gives the greatest number of boxes. It isunder these conditions that the best slant estimates are obtained. A furtherre�nement is to discard boxes in which the stroke fragments in the top andbottom sections are not connected and cannot be sensibly used to estimatethe stroke slant.In practice, despite the modi�cations, the algorithm was still sometimesfound to give poor slope estimates, and an alternative technique was triedand found to be more reliable. This involves �nding the edges of strokes,either by �nding the contour of the thresholded image (Caesar et al. 1993a;Kimura et al. 1993a) or by using an edge detection �lter. Both of these tech-niques gives a chain of connected pixels representing the edges of strokes.The orientations of edges which are close to the vertical are averaged to giveO�-line handwriting recognition 37



CHAPTER 5. NORMALIZATION AND REPRESENTATIONan overall slant estimate. An estimate based on the Canny (1986) edge de-tector has been used in this system. It is found to tend to underestimate theslant as in �gure 5.3d. Yanikoglu and Sandon (1993) �nd a similar estimate,using the mode slant found by edge operators within �30� of the vertical.5.1.3 Smoothing and thinningTo remove noise from the image, either from the original document, fromscanning defects, or from applying shear transforms to discrete images, itis useful to smooth the image. This is carried out by convolution with a2-dimensional Gaussian �lter. It has been found that there is little noiseon a scanned image when using a black �bre-tip pen on plain white paper,but degradation from this ideal situation is possible from a large number ofsources such as paper quality, age and condition; pen or pencil type; poorillumination when using a camera rather than a 
at-bed scanner; and show-through from writing on the other side of a page.Having normalized and smoothed the image, it is thresholded to leaveevery pixel black or white. Next an iterative, erosive thinning algorithm isapplied to reduce the strokes in the writing to a width of one pixel so theycan be followed later. This is the skeleton of the word shown in �gure 5.3f.The algorithm used was that due to Davies (1990:p.153).Skeletonization is a notoriously di�cult problem to solve well, and manyalgorithms have been written, with a variety of properties. Lam et al. (1992)present a comprehensive review with 138 references. Despite this di�culty,because the skeleton is to be coarsely parametrized later, a simple algorithmwas found to work well, and other algorithms that were tried (Zhang andSuen 1984; Arcelli and Sanniti di Baja 1985) did no better. There is scopefor more work on identifying a suitable thinning algorithm for handwriting,but it would seem that a model-based method such as those of Pettier andCamillerapp (1993) and Doermann (1993), which use the knowledge that theimage is made from a series of strokes, is the most promising approach. Ulti-mately what is required is a skeleton which represents the strokes perceivedwhen a human reader observes a word. Such a skeleton is probably bestfound as that which approximates the path of the pen most closely (corre-sponding to the data received in an on-line system), and not an algorithmthat best matches a human approximation to a pixel-based skeletonizationalgorithm as has been suggested (Plamondon et al. 1993). Experiments werecarried out, matching skeletons of o�-line images with the on-line data forthe same writing, but it was found that from conventional tablets there isa large error (of the order of the stroke width) in the reported pen positionwhen the pen angle varies. Without better hardware, this investigation couldnot be pursued.It is worth noting that in the database collected here, the strokes tendedto be wide, making skeletonization di�cult. In many papers, (e.g. Caesaret al. 1993a) the stroke width is small, so skeletonization works well and bothO�-line handwriting recognition 38



CHAPTER 5. NORMALIZATION AND REPRESENTATIONthe skeleton and contour will give good approximations to the true pen path.5.2 ParametrizationNow that the image has been reduced to a standard form, which highlightsinvariants of the words and suppresses spurious variations, the normalizedimage needs to be parametrized in an appropriate manner for input to thenetwork which is to carry out the recognition process. From the originalscanned image, which can take 8MB of storage space, all that is ultimatelydesired is the identity of the words on the page, an information content ofthe order of a few hundred bytes. One way of looking at recognition is asa process of information sifting with the ultimate aim of deriving the wordidentities. In order to process the data e�ectively with a recognition tech-nique such as a connectionist network, they must be reduced in number andtransformed into a form more appropriate than a grey scale image. Datarepresentation is of prime importance in pattern recognition problems andcan easily mean the di�erence between a particular method solving or fail-ing to solve a problem. The problem of representation is discussed moregenerally by Marr (1982) and Winston (1984:ch.8). Speech is coded usingtechniques such as �lters, cepstra, Mel scale binning and vector quantizationbefore attempting recognition. These representations express the relevantinformation in a much more useful form than the original time-varying volt-age measured by an analogue to digital converter attached to a microphone.Similarly, in script recognition, the useful, invariant information must be ex-tracted from the written words while discarding the vast majority of redun-dant variation. The remainder of this chapter describes the processes usedto reduce the amount of data used to describe a word, and deals with theproblem of how the word should best be represented.5.2.1 Skeleton codingThe main method of parametrization used is to code the skeleton of the wordso that information about the lines in the skeleton is passed on to the recog-nition system. An alternative method, based on the grey-level image is de-scribed in section 5.2.3.In the skeleton coding scheme, the area covered by the word is �rst di-vided into a grid of rectangles. (Figure 5.4a.) The vertical strips (frames)areof a �xed width for the whole word, a length determined by the height es-timate of the character. Typically there are 6 frames in the horizontal spaceoccupied by one character height. This assumes that the character heightis proportional to the character width, which is a valid assumption for nor-mal handwriting by a single author, but will not be as accurate for multiplewriters.O�-line handwriting recognition 39



CHAPTER 5. NORMALIZATION AND REPRESENTATION
(a) Skeleton with grid

(b) Parametrized line segment data
(c) Features superimposed on line segment dataFigure 5.4: Successive stages in the parametrization.
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CHAPTER 5. NORMALIZATION AND REPRESENTATIONThe vertical resolution of the grid is chosen so that the word is dividedinto seven regions, each of which can be identi�ed as playing a de�nite, butdistinct role in the representation of handwriting. The regions close to theupper and lower base lines identi�ed in section 5.1.1 both contain most ofthe horizontal movements in a word, representing the turning points at thetop and base of most small letters, and the ligatures between letters. Thesetwo regions also contain the end points of short strokes. The middle re-gion between these two lines captures important information about the shortstrokes which make up the majority of handwriting, as well as containing theinternal detail of the letters `�' and ` s'. The ascenders and descenders so im-portant in the Bouma shape of a letter (section 3.1) are found in the regionsabove the half-line and below the base-line, and two more regions can beidenti�ed containing the endpoints or loops of ascenders and descenders.A higher vertical resolution (16 regions) has been tried, but performancewas slightly lower because generalization was impaired; the storage require-ment of the training data also increased. There is a variable number of verti-cal frames in a word, with long words having more frames than short words,but a given character will always occupy approximately the same number.For each of these rectangles in the grid, four bins are allocated to repre-sent di�erent line angles (vertical, horizontal, and the lines 45 degrees fromthese). Within this framework, the lines of the skeleton image are `coarsecoded' as follows.The one-pixel-wide lines of the skeleton are followed, and wherever theskeleton enters a new box in the grid, the section in the previous box is codedaccording to its angle. The box associated with this segment's (x; y; �) valuesis now `�lled' (set to one). Segments which are not perfectly aligned with theangles of the bins contribute to the bins representing the two closest orien-tations. This representation can be seen to resemble the Hubel and Wieselcells which code information early in the visual cortex. These are tuned to aparticular spatial location and angle, but also respond to edges or bars withsimilar parameters. Caesar et al. (1993b) and Bengio et al. (1994a) use sim-ilar methods of representing o�-line and on-line cursive script respectively.This provides the latter with a method for coding the spatial relationships ofnearby strokes, and overcoming the problems of delayed strokes.Figure 5.4b shows the input pattern schematically. Each line representsa full bin and its position and orientation correspond roughly to the positionand orientation of the section of skeleton which gave rise to it. Because ofthe coarse coding, some line segments contribute to two bins and this is seenon the `�
' stroke which is between the vertical and 45 degrees so both theselines are shown in the corresponding boxes in �gure 5.4b.Hereafter, the �rst frame of data in the representation of a word willbe referred to as x0 and the �nal frame x� . The frames (xs; : : : ; xt) will bedenoted xts.O�-line handwriting recognition 41



CHAPTER 5. NORMALIZATION AND REPRESENTATION5.2.2 Non-uniform quantizationThe above description coded all the frames to be of equal width, and theframes were chosen by blindly drawing a grid on the word image. The widthof the frames was chosen in proportion to the character height. In prac-tice though, character height and width vary independently from author toauthor, so it would be better if these scale factors could be estimated inde-pendently. Also, rather than blindly placing the frames, it would be better ifthey could be aligned more with the data. A single frame could then containall of a vertical stroke, rather than strokes slightly o� the vertical ending upin two adjacent frames.
Figure 5.5: The non-uniformhorizontal quantization scheme su-perimposed on the histogram of the original word and its skele-ton.To correct these two problems, a simple system has been devised, whichis similar to the system used by Yanikoglu and Sandon (1993) for �nding po-tential letter segmentation points. After the word has been normalized, butbefore thinning, the horizontal density histogram is calculated and smoothed.The maxima and minima of the smoothed density histogram are found, andframe boundaries are de�ned to be the midpoints between adjacent max-imum/minimum pairs. Further frames are added where the maxima andminima are far apart, to ensure that the frames do not exceed a certain width(chosen according to the character height). Figure 5.5 shows the centres ofsegments found under this scheme. This quantization scheme is not com-pletely robust, as small changes in the image can lead to di�erent numbers ofmaxima and minima, despite the smoothing. A better scheme could perhapsO�-line handwriting recognition 42



CHAPTER 5. NORMALIZATION AND REPRESENTATIONbe designed, but this one has improved results over the uniformquantization,as is shown in table 5.1.Quantization Size of Error ratemethod network �̂ �̂Uniform 80 15.6 0.72Uniform 160 11.5 1.60Non-uniform 80 13.3 1.60Non-uniform 160 9.6 1.60Table 5.1: Error rates for networks trained on data sampled bydi�erent quantization schemes. Results are shown for networkswith di�erent numbers of feedback units (section 7.1.3).5.2.3 An alternative approachInstead of coding the image in this complicated fashion, it may be askedwhether it would not be much easier to simply present the recognition sys-tem with the image directly. This would reduce the amount of processingrequired, and skeletonization artefacts would not distort the data. The samenormalization procedures must be carried out to give scale, slant and slopeindependence and the image must be sub-sampled to obtain a manageableamount of data. Here a vertical resolution of 32 pixels is used for codingletters with their descenders and ascenders. This makes each pixel approx-imately square when using the same horizontal quantization, and gives asimilar number of bins to the skeleton coding. Figure 5.6 shows such anundersampled grey-level image. Each pixel is stored in 8 bits or 256 levels ofgrey.
Figure 5.6: The word `p�ou�n�d��' undersampled.O�-line handwriting recognition 43



CHAPTER 5. NORMALIZATION AND REPRESENTATIONThe results obtained for this preprocessing technique are compared withthe skeleton coding method in table 5.2. The skeleton coding gives a muchlower error rate. Representation Error rate %�̂ �̂Line segments 20.4 1.60Undersample 31.7 0.84Table 5.2: Error rates using line segment and undersamplingpreprocessing methods.5.3 Finding handwriting featuresThe previous sections have described how the original word image can benormalized and encoded in a canonical form so that di�erent images of thesame word are encoded similarly. However, the coding only representedlow-level information about the word, and coded it fairly coarsely to reducethe information burden. The performance of the recognizer can be improvedby passing it more information about salient features in the word. Chapter 6describes a method of �nding large-scale features, but a number of usefulfeatures can be easily discerned from the processing that has already beenperformed on the writing.Dots Dots above the letters `�i' and `�	' can be identi�ed with a simple set ofrules. Short, isolated strokes occurring on or above the half line aremarked as `i' dots.Junctions Junctions are easily found in the skeleton of the word, as pointswith more than two neighbours. Junctions indicate points where twostrokes meet or cross.End points End points are points in the skeleton with only one neighbourand mark the ends of strokes, though they can be produced as artefactsof the skeletonization algorithm.Turning points Points when the direction of a skeleton segment changes fromupward to downward are recorded as top turning points. Similarly left,right and bottom turning points can be found.Loops Loops can be found from the skeleton or by performing a connected-component analysis on the original image, to �nd areas of backgroundcolour not connected to the region surrounding the word. A loop isO�-line handwriting recognition 44



CHAPTER 5. NORMALIZATION AND REPRESENTATIONcoded by a number representing its area. A number of authors, includ-ing Srihari and Bo�zinovi�c (1987), use the topology of a word as a feature.However this is not always a good choice of invariant since extra loopscan easily be formed, or loops that could be expected might not be fullyclosed. Ascenders can become loops, `t' strokes can join up with otherletters to create a loop, and normally closed letters like `a' and `o' canbe left open or �lled in normal handwriting.Each of these features can be encoded in a single bin but, while it is onlyuseful to know whether a loop or dot is present in a particular frame, thepositions of the endpoints, turning points and junctions are useful and theyare recorded along with the angle bins for each horizontal strip. Thus in-stead of four angle bins at each vertical position, ten features are encoded,and an extra two features are associated with the whole frame. With sevenhorizontal bands, this increases the size of a frame from 28 bytes (7� 4) to 72(7 � (4 + 4 + 2) + 2), but the additional information improves the network'sperformance. Some of these features are shown in �gure 5.4c, superimposedon the line segment features. Endpoints are indicated by ` ' shapes, turn-ing points by `<' and junctions by `�'. Table 5.3 shows the performanceimprovement obtained by adding these features to the representation.Representation Error rate %�̂ �̂Line segments 20.4 1.60Line segments with features 18.2 1.60Table 5.3: Error rates using line segment coding method, withand without the skeleton features.5.4 SummaryThis chapter has described a variety of normalization methods for handwrit-ten words and then described a coding scheme for those words. It has beenshown that a coding based on extracting information from the skeleton ismore e�ective than one based on the grey level of the image. Features havebeen extracted from the skeleton and are found to improve recognition fur-ther.O�-line handwriting recognition 45



Chapter 6Finding large-scale features withsnakesLet there be snakes! And snakes there were, are, will be: : :Silvia Plath. Snakecharmer.The previous chapter described a coding for handwrittenwords which recordsthe location and orientation of the line segments in the skeleton. This cod-ing was then extended to incorporate low-level features which could be eas-ily identi�ed. All of these features were simple and local | depending onlyon information from a small area of the image. However, in section 3.1 itwas seen that the features generally held to be of most signi�cance in read-ing were larger-scale, stroke-like features. It would be highly desirable ifinformation about the presence of such features could be determined andconcisely encoded for use in recognition.A number of o�-line handwriting recognition systems have used large-scale features for recognition, indeed some are based entirely on the use ofsuch features. This chapter describes a newmethod of automatically �nding alarge class of stroke-like features in cursive words writtenwith broad strokes.Before describing the method used in this system, it is worth looking at themethods that have been used by other authors.Srihari and Bo�zinovi�c (1987) de�ne their features with rules based on thecontours of the word images. The features that are de�ned are short and longstrokes, curve sections, loops and dots. These authors constructed their o�-line data from on-line tracing information, which seems to have given smoothcurves and narrow strokes. However, de�ning rules that will reliably pick outfeatures when there is noise is extremely di�cult, and relying on the contourmeans that features that run across intersections can not be detected.Edelman et al. (1990) use a method similar to that described in this chap-ter to represent stroke-like features in on-line handwriting. They �t a num-ber of prototype stroke features to the on-line handwritten string, and usethe identities of the strokes that matched to �nd letter hypotheses and even-tually word matches. The method is described as optical matching, but thedata is again collected from a graphics tablet so the strokes are narrow and al-low curve-�tting to the contour alone. Because stroke contours are smooth,O�-line handwriting recognition 46



CHAPTER 6. FINDING LARGE-SCALE FEATURES WITH SNAKESenough strokes can be matched reliably along the length of the stroke se-quence, and letter hypotheses can be proposed solely on the basis of thesefeatures.6.1 Finding strokesThe problem with both of the above methods is that they require clean dataand narrow strokes. They operate on the contour of the image, but the fea-tures that should be detected are the strokes, which are better characterizedby the path of the pen centre than by either the left or right edge. Thus, thischapter describes a method of �nding the centres of strokes regardless of thethickness of the stroke, the irregularities in the stroke edges, or the presenceof overlapping strokes or edges.The centres of strokes are those parts which are furthest from the edges,so a natural choice of representation to consider is the distance transform.This assigns a value, D(x; y), to each pixel (x; y) in the thresholded image,which is the distance of that pixel from the nearest background pixel, zero ifthe pixel is itself part of the background. Thus circles in the image becomecones in the distance transform, the transform increasing the further a pointis from the edge, and strokes become ridges. Now detecting stroke centresbecomes a problem of �nding ridges in the distance transform. The methodchosen to �nd these ridges is snakes.6.2 SnakesSnakes are deformable splines (smooth curve segments) placed in a potential�eld which translate and deform to reduce their potential energy. Tradition-ally they have been used to �nd edges in grey level images, by according lowpotentials to areas of high contrast so that the snake seeks to match its con-tours to high contrast edges. Such a use is seen in the original paper of Kasset al. (1987). Further uses have included tracking curve sections in video se-quences (Cipolla and Blake 1990), and extraction of features from faces (Yuilleet al. 1992). In the latter case, a parametric model was built for each of thefeatures to be extracted (e.g. eyes, mouth) and these were �tted to real im-ages. Leymarie (1990) uses snakes to �nd skeletons in much the same way asthey are used here, attempting to �ndmaxima of the distance transform. Theremainder of this section describes in more detail the mechanism underlyingthe snakes' operation.The shapes of snakes are governed by cubic B-splines (Pavlidis 1992). Aseries ofN control points fpi : i = 0; : : : ;N�1g is de�ned in a two-dimensionalplane and the actual spline path generated is an interpolation of these points(�gure 6.1), each point x(s), s 2 [0; N�1] on the path being a weighted sumof the nearest control points' positions. B(s) is a polynomial function whichO�-line handwriting recognition 47



CHAPTER 6. FINDING LARGE-SCALE FEATURES WITH SNAKESdetermines how much weight is given to each control point, according tothe parameter s which increases from one end of the curve to the other. TheB-spline is forced to terminate at the end control points by generating `phan-tom' control points p�1 = 2p0 � p1, and pN = 2pN�1 � pN�2.x(s) = NXi=�1B(s+ 2� i)pi (6.1)B(s) = 8>>>>>><>>>>>>: 16s3 0 � s � 123 � 12(s� 2)3 � (s� 2)2 1 < s � 223 + 12(s� 2)3 � (s� 2)2 2 < s � 316(4� s)3 3 < s � 40 elsewhere : (6.2)The spline shown in �gure 6.1 has the minimum four control points. Formore complex shapes, more control points can be added, but each point onthe curve is only determined by the four nearest control points. Other (non-cubic) splines can be de�ned, interpolatingmore or fewer control points. Theweighting polynomials ensure continuity and smoothness (C2).
Snakelocation Idealdis
placement

Distance transformNormal p4p3p2p1p0p�1 x(s)Object
Figure 6.1: A snake with four control points and the distancetransform along a normal.Given the positions of the control points, the snake can now be locatedon an image. How it moves, according to the features in the image, mustnow be de�ned. A potential function �f(x; y) is de�ned on the pixels f(x; y)gwhere the snake is to be attracted to curves of high values in f. f might beintensity I, contrast jrI j2 or, as in this case, the distance transform D(x; y).Here the city-block metric D =j �x j + j �y j has been used for simplicity ofcomputation.The spline curves are sampled so that M samples are generated per unitin s. At each sample point sk the normal to the curve is searched for theO�-line handwriting recognition 48



CHAPTER 6. FINDING LARGE-SCALE FEATURES WITH SNAKESminimum of the potential function �f within a certain distance on eitherside. The displacement of the minimum is recorded for each sampling point,and these displacements are then added to the control points to move thesnake towards the local maxima. Since each sample point is a weighted sumof the nearest four control points:x(sk) = B(sk + 2� i)pi +B(sk + 1� i)pi+1 +B(sk � i)pi+2+B(sk � 1� i)pi+3; (6.3)the displacement d(s) is distributed among these control points:pi(t+ 1) = pi(t) + 1M Xk B(sk + 2� i)d(sk): (6.4)The new control points de�ne a spline which lies closer to the lines of localmaxima, and after two or three iterations a good match will be found if oneis present in the search area around the snake's initial position.6.3 Point distribution models and constraintsAs de�ned above, these snakes do not serve the purpose of feature recog-nition. They are very 
exible, so any snake can adapt to �t a wide range offeature shapes, even collapsing to a point in some potential wells. To com-pensate for this, Kass et al. de�ne an internal energy based on the integralof �rst and second derivatives along the snake's length, to penalize high cur-vature. This general `straightness' constraint suits the purposes of trackingedges in images, but to �nd features, the constraints need to be chosen sothat the snake can only match features of a particular shape.A number of models must be generated, each matching a particular fea-ture, but able to match instances of that feature whole shapes vary some-what. Cootes and Taylor (1992) describe `Point DistributionModels' (PDMs)which they use as shape descriptors for various objects such as hearts in mag-netic resonance images and resistors on images of circuit boards. The essenceof the PDM is performing Principal Component analysis on the covariancematrix of the coordinates of the control points of a snake, and restricting thesnake's shape to match shapes that have been seen in a training set.If a snake with n control points is placed on K examples of a particularfeature, for instance the short vertical stroke of an `�i', the positions of thecontrol points can be recorded and statistics gathered. If the kth examplefeature has position sk = (pk;0; : : : ;pk;n�1)T the centroid of that example canbe found: �pk = Pi pk;in : (6.5)O�-line handwriting recognition 49



CHAPTER 6. FINDING LARGE-SCALE FEATURES WITH SNAKESThe mean displacement of each point from the centroid can be calculated bysubtracting the centroids and averaging:�sk = (pk;0 � �pk; : : : ;pk;n�1 � �pk)T (6.6)�s = Pk �skK : (6.7)�s is the mean shape of the feature and represents a typical example. If thedeviation of a particular example from the mean shape of a feature is found:�sk = �sk � �s; (6.8)it can be considered as a vector of 2n coordinates and the 2n� 2n covariancematrix � of the shapes can be found:� = Pk�sk�sTkK : (6.9)Principal Component Analysis can be carried out to determine the modesof variation in the system. This is done by diagonalization of the covariancematrix. Each eigenvector shows a correlation in the variation of the pointcoordinates | a `mode' of variation in which the points concerned have lin-early related displacements. The eigenvalues give the extent of variation inthe direction of the corresponding eigenvector, so the largest eigenvalue'seigenvector captures most of the variation in the model shape. These modesare strikingly demonstrated in Cootes et al.'s (1992) resistor model wherethe �rst few modes correspond to natural physical parameters such as theposition of the resistor on its wire, the bend of the wire, and the shape of theresistor body. Figure 6.2 shows the major modes of variation of two featuremodels.Figure 6.2: Snake models for `n' and `o' features showing themajor mode of variation within �1:5� of the mean.Having determined these modes of variation, they can be used to con-strain the variation of a snake. Having worked out the new position of asnake with no constraints, from one iteration of the techniques of section 6.2,the centroid of the snake is calculated from the new control point coordinatevector. Transforming this di�erence into the coordinate frame of the principalcomponents gives the deviation from the mean in each direction. Variation inthe minor modes is suppressed since this represents deviation from the spaceof typical stroke shapes. The Mahalanobis distance d2(�s) = �sT��1�sshows how much the snake deviates from the model. This distance scalesO�-line handwriting recognition 50



CHAPTER 6. FINDING LARGE-SCALE FEATURES WITH SNAKESdown variation along the principal axes, giving a measure of how many stan-dard deviations the snake lies from the mean, assuming that deviations ofsnakes from the mean are distributed as a Gaussian ellipsoid. If the distanceis too great, it can be reduced by scaling down all components of the devi-ation. The constrained deviation is then transformed back to the originalcoordinates, and added to the centroid to generate a new snake which willhave a shape similar to those observed in the training set.Because the displacement to �nd the distance transform maxima and theapplication of the constraints are two separate processes, and because theimage space is quantized, it is possible that the snake enters a cycle of dis-placing onto the maximum and being constrained to its original position. Thesnake thus never reaches a stable position. To avoid this case, the �tting pro-cess is stopped after a maximum of 10 iterations, though a match is usuallyfound after just 2 or 3 iterations.Lanitis (1992) and Lanitis et al. (1993) have investigated the use of thesemodels for isolated character recognition for postcode reading. Here a modelis produced for each of 36 alphanumeric characters and these models arematched to pre-segmented images of handwritten characters from a postcodedatabase. Each model is compared with each image, and the best match ischosen. These authors do not use the distance transform for the match, butinstead rely on the skeleton, which can often be distorted away from theactual strokes at intersections.6.4 Training feature modelsIn this work the ideas of splines and principal component analysis in the formof point distribution models have been linked together to form constrainedB-spline models of features of handwritten letters.Onemodel is constructed for each feature to be recognized. In initial stud-ies these features have been: `n' hump; `�u' trough, which also models liga-tures; `�i' stroke (found in many letters including `�u' and `n'); `�' cross-stroke;ascender; descender and `o' shape. Each of these features can be modelledby a single spline, though other models such as `_' may be constructed byjoining more than one. Each model contains the mean displacement �s ofeach of the spline control points; the permitted relative variations in thesepoint positions, given by the covariance matrix �; and the mean and vari-ance of the observed y co-ordinate of the centroids �pk, to record how highin a word the feature occurs. The preprocessor determines character size, sothe coordinates are normalized to be independent of the writing size.Initially a seed model is generated by hand to describe the general char-acteristics of the feature:� The number of points needed to model the feature. For a small, straightfeature, only four points may be necessary. For a longer line or a curve,O�-line handwriting recognition 51



CHAPTER 6. FINDING LARGE-SCALE FEATURES WITH SNAKESsix are found to be adequate, but for an `o' or `s' feature, eight pointsare required to represent the shape.� The feature topology (loop or line) and the interconnection of the splines(whether they form an `_' or whether a loop has a tail or not).� The position of the feature in a character | whether the feature is inan ascender, a descender or in the middle section of lower case letters.� The initial shape of the feature.The seed models are now matched to instances of the features in imagesof handwritten words. Initially this can be by pointing out feature instancesmanually, and allowing the seedmodel to deformwithout constraint from themean to match the stroke. When the potential minimum has been found, thesnake's shape is added in to the statistics of observed shapes. When a goodmodel has been found, this procedure can be automated so that the featuresin a word are found automatically. The automatic feature spotting is usedboth to train the models and subsequently to spot the features used in therecognizer.6.5 Finding feature matchesHaving created a model for each of the features to be found, the next step isto �nd all occurrences of each feature in the word. The methods describedabove will �nd a feature match if one lies close to the starting position of thesnake, so snakes must be placed at regular intervals along the word to detectall the features present. A snake, whose shape is initially the mean shape forthe model, is placed at the left edge of the word, and permitted to deformto match the distance transform potential, but with the deformation beingconstrained to lie within � standard deviations of the mean shape | so theshape will always be similar to shapes already taken by that feature before.(For �, a value of 1 has been used here.) A best match given the constraints isfound by iterating for a limited number of times or until the snake ceases tomove. Should the snake move above or below the band where it is normallyfound, for instance a `�' stroke feature matching the top of an `r', then it isrejected. Otherwise, the degree of match between the snake and the imageis determined.The degree of match, M , is de�ned as the di�erence of two components,representing the degree of support that the data provides for the model andthe amount of deformation of the model required to �t the data. The sup-port is the sum of two components: the sum of the distance transform alongthe length of the snake plus an extra weight, w, for all points that are notbackground points, and the deformation is measured with the Mahalanobisdistance d(�s) of the match shape from the mean shape of the feature.M = Xk f(x(sk)) + wk � d(�s) (6.10)O�-line handwriting recognition 52



CHAPTER 6. FINDING LARGE-SCALE FEATURES WITH SNAKESwhere wk = ( w if f(x(sk)) 6= 0;0 otherwise: (6.11)Snakes with scores greater than a threshold are accepted as feature matches,and the remainder are rejected. The extra weight acts as a penalty for themodel crossing areas that are not strokes. Its value is determined empirically(typically 7) and the value of the threshold is adjusted in accordance with thisvalue and themean value of the distance transform. This makes thematchingprocess independentof the width of the strokes since thick strokes give ridgeswith higher distance transform values than thin strokes. The mean value ofthe distance transform is also used to indicate the stroke width in the mod-i�ed slant detection algorithm, and to give the spatial frequency parameterfor the Canny edge detector (section 5.1.2).This is in contrast to the measure of �t used by Lanitis, who adds twocomponents | the amount of data modelled by the snake and a penalty forthe amount of data which the snake fails to model. This is to prevent, forexample, an `L' model being matched to a `B'. If the unmodelled data werenot taken into account, the `L' model might appear to match the `B' alongits whole length. Since only a small part of each image is to be matched at atime, such a measure would be inappropriate here.After each match, the shape and height of the snake is re-initialized tothe mean and is displaced to the right by half its width, where the procedureis repeated until the whole word has been searched for that feature. In thisway, each feature is matched across the whole of each word in the trainingset. It is possible that two successive placements of a snake will convergeto the same feature, but multiple matches of this sort can be rejected on thebasis of the x co-ordinates of the centroids being very close. Figure 6.3 showsall the matches for the features used in a variety of words.For this application, the feature matches must be coded in the same pre-processing format described in the previous chapter. In this case, one morebyte per snake model is allocated in each frame, and whenever a featurematch is found this is recorded in the appropriate place in the frame whichcorresponds to the centroid of the matching model. In fact one model mightspan several frames, but the match is only recorded in the central frame.Method Error rate (%)�̂ �̂With snake information 15.6 0.72Without 18.2 1.60Table 6.1: Error rates with and without including snake infor-mation.Table 6.1 shows the improvement gained using snake features in addi-tion to the basic skeleton coding of chapter 5. Adding the features into theO�-line handwriting recognition 53



CHAPTER 6. FINDING LARGE-SCALE FEATURES WITH SNAKES(a) `�u' feature (b) `n' feature(c) `�i' feature (d) ascender(e) descender (f) `o' featureFigure 6.3: Di�erent features found automatically in severalwords.representation reduces the system error rate.6.6 DiscussionThe speed of the preprocessing algorithms has not been discussed so far,since the system described here has been designed for 
exibility in compar-ing alternative algorithms rather than for maximum speed. In particular, alarge number of intensive raster operations are carried out, which could becombined for greater speed. The speed of preprocessing in the current sys-tem is approximately one second per word. This could easily be considerablyreduced by optimizing the program, and many of the operations should beeasily parallelizable for an application requiring high speed.It is di�cult to have many features since with wide strokes, features tendto overlap in their roles and match the same parts of words. For exampleif one were to train a `�' shape, it would be likely to match `�i' strokes too.For the same reason, it is found that maintaining a useful degree of 
exibil-ity in the constraints on an `o' feature to make it �t a wide variety of `o'smeans that it is also 
exible enough to collapse and match `�i' strokes. Fur-ther individual constraints could be imposed, in the manner of Yuille et al.(1992), but would mean losing the simplicity of this system. If the matchingand constraints could be made more reliable, it would be desirable to makeO�-line handwriting recognition 54



CHAPTER 6. FINDING LARGE-SCALE FEATURES WITH SNAKESa more complete set of snake features that would provide a complete coverof the word image, accounting for all the ink. Such a coding could be usedas a complete representation of the word, much more compactly than theskeleton representation. Then, as with Edelman et al.'s system, recognitioncould be based on this representation alone.Alternatively, character models could be developed frommultiple snakes,giving matches for whole characters within a cursive string as those of Lanitisdo for isolated capital letters. Hinton et al. (1992) also use spline models forentire characters. They model the ink of digit images as being generatedby Gaussian sources distributed along a spline whose shape matches that ofthe character. They use probabilistic methods to de�ne an energy measurewhich is minimized to adapt their models to the data. While the method isattractive, the authors admit that it is slow, and has not proven to matchother approaches. Such whole character models could also be adapted tomultiple positions in a cursive word to �nd reliable character matches, eitherfor preliminary lexicon reduction as done by Cheriet and Suen (1993) or asan additional source of knowledge for any recognition system.
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Chapter 7Recognition methods: : : in learning to read we were satis�ed when we knew the letters ofthe alphabet, which are very few, in all their recurring sizes andcombinations; not slighting them as unimportant whether they occupya space large or small, but everywhere eager to make them out; andnot thinking ourselves perfect in the art of reading until we recognizethem wherever they are found. Plato. The Republic.The next stage in the process of deducing word identities from handwritingis to recognize what is represented by the frames of data created in the pre-vious chapter. A variety of pattern recognition methods is available, andmany have been used for handwriting recognition by other authors. Herethree techniques are presented which calculate an estimate of the probabil-ity of any given frame being part of the representation of a given letter. Howthese probabilities are combined together to �nd the most likely word isexplained in the next chapter; this chapter simply describes how these prob-ability estimates can be derived.There are several established methods of estimating a sequence of prob-abilities from a sequence of data. The speech recognition community hasbeen �nding solutions to this problem for some time, and their solutionsare applicable to the problem of handwriting recognition. From the litera-ture, three main methods emerge. Hidden Markov models have become themost widely used approach to modelling speech (e.g. Woodland et al. 1994).Feed-forward neural networks have been used by several authors, includingBourlard and Morgan (1993), and recurrent neural networks have also beensuccessful in this �eld (Robinson 1994).Other authors have used these approaches to on-line recognition, esti-mating probabilities for short sections of the input data. Among these arethe hidden Markov models of Bellegarda et al. (1994), Nag et al. (1986) andStarner et al. (1994). The latter have obtained good results simply using aspeech recognition system with handwritten data. Time-delay neural net-works (TDNNs), a form of feed-forward network, are used by Schenkel et al.(1994) and Manke and Bodenhausen (1994).O�-line handwriting recognition 56



CHAPTER 7. RECOGNITION METHODSThese methods are also applicable to o�-line handwriting, though there isno longer a readily apparent time-ordering of information. Instead the x-axisis divided up to give successive frames, processed left-to-right in the sameway as scanning processes of reading. Caesar et al. (1993b) and Gilloux et al.(1993) use hidden Markov models for o�-line recognition, though the latteruse a sparse x-ordered series of large-scale features, unlike the representa-tion with many parallel features per frame that is used here. Breuel (1994)uses a feed-forward network for classifying o�-line handprinted strings.In this work, all three of these methods have been investigated as meth-ods of estimating the data likelihoods P (x�0j�i) which are used to �nd wordlikelihoods in the next chapter. The remainder of this chapter describes eachmodel, though intensive study was not made of TDNNs because they did notperform as well as the recurrent networks in early trials.7.1 Recurrent networksThis section describes the recurrent error propagation network which hasbeen used as one of the probability distribution estimators for the handwrit-ing recognition system. Recurrent networks have been successfully appliedto speech recognition (Robinson 1994) but have not previously been used forhandwriting recognition, on-line or o�-line. Here the time axis is replacedby the horizontal displacement through the word, frames representing not aspeech signal over time, but successive vertical strips from a word, workingleft to right. A recurrent network is well suited to the recognition of patternsoccurring in a time-series because the same processing is performed on eachsection of the input stream. Thus a letter `a' can be recognized by the sameprocess, wherever it occurs in a word. In addition, internal `state' units areavailable to encode multi-frame context information so letters spread overseveral frames can be recognized.Recurrent networks are a type of connectionist (often termed `neural')network; that is to say they are composed of a large number of simple pro-cessing units with many interconnecting links. Each unit merely outputs afunction of the weighted sum of its inputs, but the usefulness of such net-works resides in the existence of training algorithms which can, by repeatedpresentation of training examples, adjust the weights to converge towards adesired function approximation. In this case the network is taught to rec-ognize letters and the functions to be approximated are letter probabilitydistributions P (�ijxt0).The recurrent network architecture used here is a single layer of standardperceptrons with nonlinear activation functions, as described by Rumelhartet al. (1986). The output oi of a unit is a function of the inputs aj and thenetwork parameters, which are the weights of the links wij with a bias bi:oi = fi(f�jg); (7.1)�i = bi +X ajwij : (7.2)O�-line handwriting recognition 57



CHAPTER 7. RECOGNITION METHODS
... v v l e e w w w t t...Input/output units

Unit time delay
NetworkInput frames Feedback unitsOutput(Character probabilities)

Figure 7.1: A schematic of the recurrent error propagation net-work. For clarity only a few of the units and links are shown.The network is fully connected| that is, each input is connected to every out-put. However, some of the input units receive no external input and are con-nected one-to-one to corresponding output units through a unit time-delay(�gure 7.1). The remaining input units accept a single frame of parametrizedinput and the remaining 26 output units estimate letter probabilities for the26 character classes. The feedback units have a standard sigmoid activationfunction f(�i) = (1 + e��i)�1, but the character outputs have a `softmax' acti-vation function fi(f�jg) = e�iPj e�j (section 7.1.1).During recognition (`forward propagation'), the �rst frame is presentedat the input and the feedback units are initialized to activations of 0.5. Theoutputs are calculated from equations 7.1 and 7.2 and the output letter prob-abilities are read o� from the outputs. In the next iteration, the outputs ofthe feedback units are copied to the feedback inputs, and the next frame pre-sented to the inputs. Outputs are again calculated, and the cycle is repeatedfor each frame of input, with a probability distribution being generated foreach frame.It can be shown (Bourlard and Morgan 1993:p.118) that when the globalminimum of the network is reached, assuming that the network has enoughparameters and the training scheme can �nd the global minimum, the net-work outputs will approximate the posterior probabilities P (�ijxt0). It willbe seen later (chapter 8) how these probabilities can be combined to obtainO�-line handwriting recognition 58



CHAPTER 7. RECOGNITION METHODSword likelihood estimates in a Markov model framework. This frameworkmakes use of the data likelihoods P (xtj�i) which can be approximated by as-suming that the current character class is conditionally independent of theprevious frames, given the current frame. (i.e. that P (�ijxt) � P (�ijxt0) whichis a standard assumption made by researchers using hidden Markov modelsto model handwriting). Then the following equation can be used (Bourlardand Morgan 1993): P (xtj�i) / P (�ijxt)P (�i) : (7.3)The assumptions used in making this approximation are explained further inthe next chapter.To allow the network to assimilate context information, several framesof data are passed through the network before the probabilities for the �rstframe are read o�, previous output probabilities being discarded. This in-put/output latency is maintained throughout the input sequence, with extra,empty frames of inputs being presented at the end to give probability dis-tributions for the last frames of true inputs. A latency of two frames hasbeen found to be most satisfactory in experiments to date. A longer latencyto incorporate whole letters in the context would be ideal, but learning longterm dependencies in recurrent networks is not easy (Bengio et al. 1994b)because of the number of layers through which errors must be propagated,and a compromise is used.7.1.1 Training
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CHAPTER 7. RECOGNITION METHODSnition, but the inputs, outputs and feedback activations for each frame arestored. At the end of a word, errors in the network's output are propagatedback using the generalized delta rule (Rumelhart et al. 1986), and changesto the network weights are calculated. The network at successive time stepsis treated as adjacent layers of a multi-layer network (�gure 7.2). This pro-cess is generally known as `back-propagation through time'. After processing(�+1) frames of data with an input/output latency, the network is equivalentto a (� +1+ latency) layer network. Readers are referred to Rumelhart et al.(1986) and Robinson (1994) for a detailed description of the basic trainingprocedure.It is widely recognized that this back-propagation algorithm can be im-proved in a variety of ways, to speed convergence and to make convergenceto a good local minimum more likely. In addition to the incorporation ofa momentum term in the weight update formulae, two such improvementshave been used in this work, namely Jacobs' delta bar-delta update rule (Ja-cobs 1988) and Bridle's (1990) softmax. The former provides for individuallearning rates for each weight which adapt according to the signs of succes-sive weight changes. The latter provides a di�erent transfer function on theoutput units of the network, ensuring that the outputs are between 0 and 1and sum to 1 (as is desirable since they are treated as probabilities). Thisalso trains the network according to a relative entropy (between the out-put and target probability distributions) error criterion instead of the least-squares error measure more commonly used in back-propagation networks.Because of di�culties in training stability, modi�cations to the delta bar-delta rule suggested by Robinson and Fallside (1991) were incorporated andgave much improved convergence. These changes use multiplicative learningrate changes and prevent the learning rates from deviating too far from themean. For this work an additional measure was taken, of zeroing momen-tum terms when the mean output/target relative entropy over the trainingset increased.Training times for neural networks can be very long. In this instance train-ing takes several days on a fast computer. (More than 3 days of CPU time foran 80-unit network.) In addition to the methods described above, a numberof other ways to improve training speed have been explored. The most sig-ni�cant is to choose an e�cient training schedule. This speci�es how manypatterns should be presented to the network before each weight update. Ini-tially the weight updates from di�erent patterns will tend to be in roughlythe same direction, as the network moves to an appropriate region in weightspace. Later the updates from di�erent patterns will be in di�erent direc-tions, and the updates need to be smoothed to �nd the best displacement forthe whole training set. Thus, at the start of training, weights can be updatedon a per-pattern basis (`on-line' or `stochastic' training), but for �ne-tuningnear the end of training, weight updates should be averaged over a larger setof data.In this application, a number of simple schedules have been tested, withO�-line handwriting recognition 60



CHAPTER 7. RECOGNITION METHODSthe best being to start by updating on a small number of words, typicallya batch of four words or about 80 frames. Then, whenever the mean rela-tive entropy increases, the batch size is doubled, with a corresponding cutin the step size parameter. This continues up to a limit of 1024 words perbatch (roughly a third of the training set). The momentum factor also con-trols this smoothing, but no schedule based on changing this parameter wasfound to be as good. This is, however, the method preferred by Robinson(1994) who increases the momentum parameter (the degree of smoothing)over time. Bourlard and Morgan (1993) also prefer on-line training. Thechoice is perhaps largely to do with the size of the training set. Although thehandwriting database was large (56,000 frames), it was feasible to calculate aweight update based on a third of the training set, which is impossible for themuch larger speech databases. The presentation of all the training examplesto the network is called an epoch. The number of weight updates per epochdecreases to three during training.The Quickprop weight update scheme (Fahlman 1988) was also tried. Thisapproximates the error surface as a quadratic, with diagonal covariance, anduses quadratic interpolation to predict the minimum in each dimension. Thisis e�ective for small dataset problems, where weight updates are alwaysbased on the whole dataset, so a good estimate of the true error surfacecan be obtained. The method did not perform well with the on-line trainingused here, as the shape of the error surface is di�erent for each batch of data.7.1.2 Network targetsFor training, a target value must be given, against which the network outputcan be compared in order to compute the error in the outputs and the weightupdates. The target value is given in the form of a label for each frame ofthe training data, indicating the correct class | the class for which the net-work output should be one, all others being zero. With the data collectedhere it is a relatively simple matter to associate the word label with eachword image (section 4.2). However, the labelling of individual frames withthe corresponding class is not as easy, and some thought must be given tothis problem. Unlike the segmentation problem of most handwriting systems(section 2.3.2), this is not the problem of determining where the test wordimage must be split to separate its component letters, but that of assigninga letter label to each of the frames of a training word. This is only for train-ing purposes, and need not be carried out on test words. In new data, thisframe/letter correspondence is not trivially determined; it can only be trulycarried out by accurate recognition | a catch 22 situation. For some prob-lems, such as speech recognition, people have resorted to hand-labelling datato give an initial training set. This has been avoided here by using a `boot-strap' scheme which derives an approximate segmentation from a very naivetechnique. This segmentation is good enough to train the network to a pointwhere its own segmentations are more accurate. Hand segmentation wouldO�-line handwriting recognition 61



CHAPTER 7. RECOGNITION METHODSbe more accurate still, so might give improved results, but would require alarge amount of tedious work, for little or no gain.The scheme used initially is an `equal length' scheme, where each letterin any word is assumed (though this is clearly inaccurate) to occupy the samenumber of frames of input. Thus, in an n letter word which takes �+1 frames,the �rst �+1n frames are labelled with the �rst letter of the word. In `n�ou�n',for example, one quarter of the frames are assumed to belong to each letter.This can be made slightly more accurate by recognizing that `^' and `m' arelonger than other letters and `�i' and `�
' are shorter. Letters in these classesare given relative lengths of 3 and 1 respectively, compared to 2 for otherletters. The frames are then labelled in proportion to the relative lengths ofthe letters in the word. Thus, in the word `wi��', the �rst half of the frameswould be considered to represent the `^', the next sixth the `�i' and the re-maining third the `�'. It is this segmentation that gives the targets which therecurrent network is trained to reproduce. The targets are set to one for thecorrect class and zero for all other classes.These targets are only used for preliminary training. Re-estimated targetsare used to achieve greater performance. The re-estimation process will bedescribed in chapter 8.7.1.3 GeneralizationA problem with network training is to obtain the optimum solution to thetrade-o� between training and generalization. This well-known problem canperhaps best be seen by considering the problem of curve-�tting to n datapoints. An (n � 1)th order polynomial can be found to perfectly interpolateany such set, but if there is any noise in the data, the values on the curvebetween will correspond badly to the values of any subsequently observeddata-points. The curve is over-�tted, and generalization is poor. Similarly,in training a recurrent network, given enough time and computing powerit should be possible to train a large enough network to match the desiredtargets arbitrarily closely. However, such a network will give poor general-ization andmake poor predictions for inputs other than those included in thetraining set.One way of maintaining good generalization is to make sure that the net-work size is right for the size of the problem. In this case the number ofparameters is kept down and the order of the model is chosen to be appro-priate to the task to be solved (e.g. �tting a straight line to the n data pointswhen a linear e�ect is being modelled). For complex problems the size ofthe network for optimum generalization is di�cult to determine, though in-dividual authors have found rules-of-thumb relating the number of trainingexamples to the number of free parameters to be trained (Bourlard andMor-gan 1993:p.234). In practice, for a speci�c problem, trial-and-error is oftenused. Methods whereby the network is grown or pruned to the right sizehave also been developed.O�-line handwriting recognition 62



CHAPTER 7. RECOGNITION METHODSAn alternative is to use a networkknown to be at least large enough for theproblem, but to prevent over-training within that network. Possible tech-niques include weight decay and adding noise to weights, but the methodused here is early-stopping which can be implemented without changing thetraining procedure and has the advantage of limiting training according to thesame performance criterion (word error rate) as will ultimately be used fortesting the network. If a network is trained on a dataset, it is found that,during training, the error rate when tested on an independent validation setwill fall as a solution is learnt, and then begin to rise as generalization is im-paired by over-training. If training is stopped at the minimum of the valida-tion error, optimum recognition on an independent test set will be obtained.This method has been widely used in the neural-network community, and isparticularly appropriate for large dataset tasks. Bourlard andMorgan (1993)have used a similar method for large-vocabulary speech recognition.To determine the best time to stop training, the training set is partitionedinto separate training and validation sets. After training the network for ashort time, the network's performance is tested on the validation set. Thistrain and validate cycle is repeated every epoch until the error rate on thevalidation set starts to increase, indicating that the network is starting tobecome over-trained. The stopping criterion is a heuristic based on the ob-servation of validation word error rate over time. The criterion used here isto stop when the validation error rate is above the minimumobserved duringtraining for more than twelve epochs, or the same without a decrease in themean relative entropy. After �nishing training, the network with the lowesterror rate is reloaded, and tested on the training set which consists of datanot previously presented to the network.Number Error rate (%) Epochs Time perof units Fixed target Retraining epoch (s)0 49.0 40.9 75 12302 41.1 34.0 171 12504 29.3 26.2 141 125010 23.1 22.3 133 128020 21.6 19.1 132 127040 21.4 16.3 181 145080 16.9 15.6 132 2100160 14.8 12.2 115 4900320 13.5 9.6 116 14000Table 7.1: Error rates for networks with di�erent numbers offeedback units.Table 7.1 and �gure 7.3 show the error rates for units with di�erent num-bers of hidden units. Results are quoted before and after re-training withre-estimated targets, a process explained in section 8.3. Performance canbe seen to improve steadily as the number of units increases. Thus it canO�-line handwriting recognition 63
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Figure 7.3: Test error rates againstnumber of feedback units, showingerror bars (one standard deviation).The lower curve shows the error af-ter retraining with the Baum-Welchre-alignment. Figure 7.4: Approximate averagetraining time against number of net-work weights (log-log scale).be seen that early stopping ensures that generalization does not su�er whenthe network size is increased. In fact the increased capacity of more feedbackunits allows the network to perform better. Because of the increased train-ing time associated with larger networks, no network above 320 feedbackunits has been trained, though it is likely that the recognition rate would bestill higher. The time estimates are seen to come from a constant term (be-cause of overheads and of cross-validation testing) plus a term proportionalto the number of weights (proportional to the square of the number of feed-back units), which becomes signi�cant only with 40 or more feedback units(�gure 7.4).It will be seen from the high values for the standard errors of the meanerror rates quoted that the �nal solutions obtained are dependent on theinitial conditions (the randomweights given to the network prior to training).It can easily be seen that there are many global minima (any permutation ofthe feedback units gives an identical solution) and it is not surprising that adi�erent solution is found each time, the local minima found in weight spacecorresponding to networks giving di�erent performances. This is a problemthat might be solved with more data or by better training, for instance by�nding a better training schedule.In summary, while a satisfactory method of training has been found, whichreaches good solutions, there is scope for speed improvement. This scopeexists both in �nding better training schedules within the space of solutionstried already, and in trying more complex update techniques. The ensembleof training methods currently used resembles those arrived at by BourlardO�-line handwriting recognition 64



CHAPTER 7. RECOGNITION METHODS
0

20

40

60

80

100

0 20 40 60 80 100 120 140

Errorrate% Epochs 0

20

40

60

80

100

0 20 40 60 80 100 120

0
2
4

10
20
40
80

160Errorrate% EpochsFigure 7.5: Validation error rateagainst number of training epochsfor �ve networks under the sameconditions, but di�erent initialweights. Figure 7.6: Percentage recognitionerror rate versus number of trainingepochs for networks with di�erentnumbers of feedback units.
0

0.5

1

1.5

2

2.5

0 20 40 60 80 100 120 140 160

Meanrelativeentropy Epochs
80 units160 units320 units

Figure 7.7: Average relative entropy of the training set outputsand targets against number of training epochs.O�-line handwriting recognition 65



CHAPTER 7. RECOGNITION METHODSand Morgan (1993) and Robinson (1994), but di�ers in a number of details.7.1.4 Understanding the networkOne of the great problems with neural networks in general, and recurrentnetworks in particular, has been the lack of understanding of how the net-works operate. It is not always well understood to which problems they arebest suited, or how best to use them on problems to which they are appro-priate. Neural networks have been studied in greater depth in recent years,though the high dimensionality of interesting problems makes analysis dif-�cult. While `gradient descent on the error surface' is often talked about,it is only for a trivial neural network with two weights that this surface canbe plotted, and for higher dimensions it becomes di�cult to calculate, letalone visualize. Recurrent networks are harder still to understand, since thedimensionality is much higher | outputs are dependent on the inputs, notonly of the current frame (and for the handwriting recognition networks dis-cussed here, there are about 80 inputs), but also of all the preceding frames.Robinson (1989) and Pearlmutter (1990) have previously studied the op-eration of recurrent networks under certain conditions. In order to discoverhow the recurrent network is operating in this task, a graphical interface tothe network has been constructed, enabling inputs, activations and weightsto be examined. The remainder of this section discusses some of the under-standing that has been reached as to the internal representation of data inthe network.A �rst experiment to demonstrate the network's operation is to pass asingle word through the net and to observe the outputs. Figure 7.8 showsan example of the word `�fortu�n�½' being presented to the network. Thehorizontal traces show the activations of the output units against time. Sincethe outputs of the network are constrained by the softmax function to sumto one, most of the outputs are seen to be always close to zero, with only oneor two rising to a signi�cant value at any time. The activities during the �rsttwo frames (before the �rst vertical line) are always ignored in the trainingand testing of the network because of the input/output latency. Subsequentframes see the probabilities for `f', `o', `r' and so on increasing, with a smallamount of activity in other letters. Note that the valley between the `�u'and `n' is confused with a `v', and that the `�' is partially confused with an`l', but these confusions are eliminated by the duration modelling (discussedin chapter 8.2) and the requirement that the word should be in the lexicon.The vertical lines represent the letter boundaries of the forced alignment(section 8.3) from the Viterbi decoder.Consider now the weights within the network. Initially networks wererandomly initialized with weights of zero mean and small variance. However,after training, all the weights from any feedback unit to the same unit for thenext time-step were found to be positive, with strong connections. (For atypical network they havemean 2.6 and standard deviation 0.6.) ConnectionsO�-line handwriting recognition 66



CHAPTER 7. RECOGNITION METHODS
u n a tt eo rfFigure 7.8: The system recognizing the word `�fortu�n�½'. Theactivations of the output units are plotted against the num-ber of frames processed. Class boundaries found by Viterbiforced alignment are shownwith the associated class labels (sec-tion 8.3).to other feedback units vary greatly, with a slightly negativemean (e.g. mean-0.4, standard deviation 1.2). This indicates that the network is learningthe intuitive mechanism of having the feedback units preserve their state,except when in
uencedby inputs and other feedback units. Since the networksolutions seem to favour this state-preservation, better solutions might befoundmore quickly by choosing an initial weight distributionwhich preservesstate. This can be calculated as follows.If the feedback units are assumed to have a mean activation aj = 0:5 (cor-responding to a weighted sum of inputs �i = 0, since the sigmoid activationfunction, for which f(0) = 0:5, is used for the feedback units), then�i = bi +Xj ajwij � bi + 0:5wiiif the other weights have a zero mean. For steady-state conditions, �i = 0,so bi = �0:5wii. Now, for an activation ai = 0:5 + �ai,�i = bi + aiwii:Since ai = f(�i), for small �ai:�ai = f(ai) � 0:5 � �aiwiif 0(0):For the sigmoid, f 0(0) = 0:25 so the state is stable when wii = 4; bi = �2.Priming the network connections to these values gives faster training andO�-line handwriting recognition 67



CHAPTER 7. RECOGNITION METHODSa greater recognition accuracy after training. The �nal values of these linksare much higher (mean 4.6, standard deviation 0.5), revealing that primingthe network weights puts the network into useful areas of weight space thatwere not explored while training un-primed networks. It also con�rms theusefulness of feedback connections which preserve the feedback units' state.Examining other connections within the network, it is seen that very fewweights from input to output units are positive. This is to be expected, sincea single frame of input is itself ambiguous and does not give a strong indica-tion as to the character of the frame two time-steps previously (which directlinks would indicate, since outputs refer to the frames input two time-stepspreviously). One notable exception to this is the letter `q' which has stronglinks from the units representing lines in the lowest part of a word. This isbecause `�' is written with a descender to the right of (delayed with respectto) the body of the letter. Figure 7.9a shows the links from one input unit inthe lowest part of the word. All the letters with descenders to the right areactivated by this input unit, while other outputs are inhibited. Because someinformation is transferred by the direct input-to-output connections, it hasbeen found that a network with these connections performs better than onewhich does not.In a recurrent network, the most important aspect to understand is thefeedback units. In this handwriting problem, they need to represent thefeatures presented at the input during the last few time-steps so that a clas-si�cation of the current frame can be made according to the context, sincean individual frame is ambiguous. However, the way this information is en-coded is not readily apparent. As was noted earlier, each unit has a strongfeedback connection to itself to maintain the state over time. Otherwise, fewlinks from the feedback units are found to be strongly positive.If a network with very few units is examined, it is easier to understandthe role of the feedback units. Figure 7.9 b,c shows the connections from theonly two feedback units in a small network to the outputs. It is noticeablethat the connections re
ect the frequencies of the letters in the training set.Very rare letters such as `q' and `z' have very strong negative connections.Because of their rarity, these letters generate very little error signal, so it isinappropriate for the scarce resources to be used modelling these letters. Onthe other hand, the letters `edlrst' have positive connections from the feed-back units since these are common. The two most common letters (`et') aremodelled by both feedback units. Figure 7.10 shows the output probabilitiesfor the word ` �¢�a�k�i�n��', which shows the e�ect of this. The letters `se' arewell-de�ned, though not as clearly as with the 80 unit network (�gure 7.8).There are noticeable peaks in the output traces of these two letters, but theother letters show no marked deviation from zero. It can also be seen thatthrough the direct input-output connections, the descender is identi�ed asbelonging to either a `�' or a `�', though the network does not have the mod-elling capacity to distinguish the two. Despite the uncertainty of the networkduring most of the frames, the correct word is still chosen from the lexicon.O�-line handwriting recognition 68
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CHAPTER 7. RECOGNITION METHODS

Figure 7.10: The two unit network recognizing the word ` �¢�a�k-�i�n��'. No class boundaries are shown because the 2-unit net-work re-estimates are inaccurate.The role of the feedback units can also be veri�ed by examining their ac-tivations when presented with word data. The units are generally seen tohave high activations when the relevant letters are present at the input, andlow otherwise, though the correlation is far from perfect. In �gure 7.10 theactivation of feedback unit zero is high during the ` s' and `�', though unit 1does not go high during the `�' as might be expected. The biases to the outputunits are found to re
ect the variation in class frequencies, but this correla-tion is not as strong as suggested by the experience of Bourlard and Morgan(1993:p.127). Examining a network with four units, one of the feedback unitsis found to have negative connections to all the outputs except `i', and to re-ceive strong positive input from the input unit representing the dot feature.This representation allows the network to remember the presence of an i dotduring the latency period.Another way of investigating the network's behaviour under controlledconditions is to feed a null input into the network. A data �le where allframes are entirely zero is constructed, and presented to a trained network.The unforced output for a sample network with 60 feedback units is shownin �gure 7.11. It can be seen that the output and feedback units go throughseveral cycles before reaching a steady state with all the units in saturation.Examining a network with but one hidden unit shows that the network dy-namics are, understandably, simpler. The outputs are all monotonic, andO�-line handwriting recognition 70



CHAPTER 7. RECOGNITION METHODS

Figure 7.11: The network outputs for unforced inputs.O�-line handwriting recognition 71



CHAPTER 7. RECOGNITION METHODSreach a steady state after a few frames. As networks with more and morefeedback units are tested, the behaviour becomes more complex, until witha 160-unit network, no steady state is achieved after 130 frames. The net-work appears to be entering limit cycles, exhibiting dynamic behaviour withno active inputs.7.2 Time-delay neural networks
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Figure 7.12: A schematic of the time delay neural network,showing a single hidden layer.Time-delay neural networks (TDNNs) are a method of applying a simpleforward-propagation neural network to a sequence of frames of data to arriveat a sequence of probability estimates. A TDNN is represented in �gure 7.12.A layer of perceptrons, as used in the recurrent network, takes a small groupof input frames (three in the diagram) and calculates the activations of a cor-responding hidden frame with equations 7.1 and 7.2. The receptive �eld ofthe perceptrons is then shifted to the right, and another hidden frame calcu-lated. This process can be repeated for all the frames. At the same time, asecond layer of perceptron units takes a group of hidden frames and for eachof these calculates an output probability distribution with softmax units, justas for the recurrent network. Thus, for each input frame a corresponding out-put distribution is calculated. Since the same perceptrons operate on eachsection of the input, the TDNN is good at position-invariant pattern recog-nition. It has a �xed window of context which is the number of input frameson which each output depends. The length of this window (�ve frames inthe diagram) is determined by the receptive �elds of the perceptrons. Thismakes the TDNN good for recognition of patterns with limited context, whenO�-line handwriting recognition 72



CHAPTER 7. RECOGNITION METHODSthe extent of this context is known, but longer-term dependencies can not belearnt. Because of the rigid hierarchy of the input and hidden units, de-pendencies of variable length are hard to learn. Each perceptron can onlyassociate features which are a �xed distance apart. The recurrent network,on the other hand, stores all context in the hidden units which are availableat every time step. If the context is of variable length, the feedback units willvary slowly and the correlation between two features can be detected at anarbitrary delay.It is believed to be for this reason that TDNNs did not perform well onthis handwriting recognition task. They were also found to be unwieldy sincethe architecture of a TDNN is speci�ed by a large number of parameters. Thenumber of hidden layers must be speci�ed, as well as the number of unitsin each and the size of each receptive �eld. A further parameter that canbe controlled is the number of frames shifted between successive operationsof each of the sets of perceptrons. Finding a good set of values for all theseparameters requires a long search, whereas the recurrent networkhas a singlesuch parameter | the number of feedback units (section 7.1.3). Because ofthis poor initial performance, TDNNs were not investigated further, and noresults are presented for them here.7.3 Discrete probability estimationThis section describes the third technique investigated for probability esti-mation. This involves computing a number of integer-valued indices fromeach frame and using these to look up probability values in pre-computedtables. When combined with the hidden Markov models (HMMs) describedin the next chapter, the system is a conventional discrete HMM since this isthe usual method of calculating probabilities for a discrete HMM. By con-trast, the recurrent network and HMM together would be termed a hybridsystem.The probabilities thatmust be estimated are the likelihoods P (xtj�i)|theprobability of a frame of data being generated, given the identity of the letter.Since the data are represented as about 80 features, each coded as a byte(256 possible values), to store the probability of each possible co-occurrencewould require 25680 � 26 probabilities to be stored and estimated. This isclearly computationally impractical and would require infeasible quantitiesof data to give estimates of the probabilities. Parametric distributions couldbe used, which calculate these probabilities as functions of a smaller numberof parameters, but the numbers are still impractical, and the re-estimationmore di�cult. Two methods are used to simplify the estimation.O�-line handwriting recognition 73



CHAPTER 7. RECOGNITION METHODS7.3.1 A simple systemFirst, since the units mostly record simply the presence or absence of a fea-ture, even for the skeleton where the coarse coding does give values between0 and 1, the most important information is whether a line segment is presentor not. The inputs are thus re-quantized to be binary-valued (or some othernumber of values much less than 256). Secondly, the features are assumed tobe independent. Thus the probability of the co-occurrence of all the featuresin a frame is simply the product of the occurrence of the individual features.P (xtj�i) � Yj P ((xt)jj�i) (7.4)Now only 80� 2� 26 probabilities need to be stored or, since the pairs mustsum to one, only 80 � 26.The assumption of independence in the occurrence of features in the inputis clearly inaccurate since, for example, the occurrence of a vertical stroke inone box is highly correlated with the occurrence of a vertical stroke in the boxbelow. In practice, the assumption is far too strong, and the performanceof the HMM system is much worse than that of the recurrent network (anerror rate greater than 50%). The following section describes a system whichobviates the independence assumption, and gives better recognition results.7.3.2 Vector quantizationVector quantization (VQ) is a method of characterizing each frame by a singlenumber, or code c(xt). The quantization process is designed so that similarframes are all coded as the same number. Then, instead of estimating theprobability of all the features in a frame given the character class, it is onlythe probability of the code given the character class that must be estimated:P (xtj�i) � P (c(xt)j�i).In vector quantization, each frame is considered as a vector in a metricspace with as many dimensions as there are elements in the frame. Quanti-zation determines a codebook of code vectors ci in this space. Each frame xtis then coded according to the nearest code vector: c(xt) = argmini kci � xtk2.In the subsequent training, it is these codes that are the features, and it isthe probability of a code being part of a given letter that must be estimated.Before being able to estimate the probabilities, the code vectors must bedetermined. To be representative, they must be well distributed in the spaceof vectors actually produced by the preprocessing system, and each shouldrepresent a typical group of vectors which can be considered to be similar.The groups of equivalent vectors are assumed to be those close to one an-other in themetric space, and the code vectors are determined by a clusteringalgorithm which �nds these clusters in the training vectors. Each code vectoris then the centroid of a cluster of training vectors. A number of algorithmsexist for carrying out this clustering, and a number are reviewed by GrayO�-line handwriting recognition 74



CHAPTER 7. RECOGNITION METHODS(1984). The method used here is by Linde et al. (1980). It produces a set ofcoding vectors given a training set of vectors output by the preprocessor |the same training set which, when coded by the quantizer is used to estimatethe code probabilities which are stored in the tables. In brief, the algorithmworks in the following manner:1. Seed the quantizer with one classi�cation vector | the centroid of thetraining set.2. Split each classi�cation vector to give two, perturbing each slightly. Thishas the e�ect of dividing the original cluster with a hyperplane perpen-dicularly bisecting the line joining the two new centres. If the perturba-tion is su�ciently small, the other class allocations will be una�ected.Perturbation along the line joining the centroid to the origin was foundto work just as quickly as perturbation along the axis with the greatestin-cluster variance.3. Classify each of the training vectors by assigning it to the nearest clas-si�cation vector.4. Move each classi�cation vector to the centroid of the training vectorswhich were nearest to it.5. Go to step 3 unless the classi�cations are the same as in the last itera-tion.6. Go to step 2 until the desired number of classi�cation vectors is ob-tained.For step 3, a distance metric must be speci�ed. As a �rst approximationthe Euclidean distance was used. This is reasonable since all the inputs areconstrained to fall in the same [0; 1] interval. This distance will reduce tothe Hamming distance when all the vectors are binary valued. An alterna-tive which has also been tested is the Mahalanobis distance (already seen inchapter 6), where the distance between two points x and y is given by:kx � yk2 = (x � y)T��1(x � y); (7.5)where � is the covariance matrix of the training vectors.The Mahalanobis distance is derived from the assumption that the distri-bution of vectors is elliptically Gaussian, which is clearly not true here. Nev-ertheless, it allows correlations between vector elements to be taken intoaccount when �nding the distance between two vectors. A better metric,based on knowledge of the origin of the data and the fact that the data arelargely binary-valued could probably be found. This would model the cor-relations between features better and result in more representative clusters.O�-line handwriting recognition 75



CHAPTER 7. RECOGNITION METHODSBetter results might be obtained from quantizing with such clusters. How-ever, hand-crafting a metric would be a complex procedure, and the Maha-lanobis metric is the most complex metric investigated here.A further issue in designing a VQ-HMM system, is the optimumnumberofclusters to choose. This involves striking a balance between an over-trainedsystem which does not generalize well and one which has a low discriminativepower. Results are given for a variety of numbers of clusters and the optimumvalue chosen.7.3.3 TrainingDiscrete probability estimation requires the tables of probabilities to be �lledwith the estimate of P (cij�j) for each of the codes ci and letters �j. Aftervector quantizing the corpus and labelling each frame with the automaticsegmentation procedure, the number of times code ci is part of letter �j iscounted over the whole training corpus. Dividing by the number of framesrepresenting �j gives an estimate of the emission probabilities P (cij�j). Byre-aligning with the Baum-Welch procedure of chapter 8, the probabilitiescan be re-estimated and the recognition rate improved slightly. For thisHMM framework, the Baum-Welch procedure is very fast, since the maxi-mization step of the Expectation-Maximization algorithm, of which this is anexample, consists only of taking the frequency counts rather than doing gradi-ent descent as with the recurrent networks | a notoriously time-consumingproblem.Recognition rates for the HMM system with Euclidean and Mahalanobisdistances are shown in tables 7.2, 7.4 and 7.3. The numbers of clusters arepowers of two in the �rst table, since at each iteration of the splitting algo-rithm the number of clusters is doubled. In the other tables, the number ofclusters is lower because during the splitting some clusters have been foundto be empty and the corresponding centroids discarded.Clusters Error rate (%)256 24.1512 20.61024 22.92048 28.14096 93.5 Clusters Error rate (%)256 25.9509 22.01006 21.01979 23.93796 40.6Table 7.2: Error rates for the hid-den Markov model system with Eu-clidean distance vector quantization. Table 7.3: Error rates for the hiddenMarkov model system using diago-nal covariance Mahalanobis distancevector quantization.O�-line handwriting recognition 76



CHAPTER 7. RECOGNITION METHODSClusters Error rate (%)254 26.6505 24.51001 22.4Table 7.4: Error rates for the hidden Markov model system us-ing Mahalanobis distance vector quantization.From tables 7.2 and 7.3 it can be seen that increasing the number of clus-ters up to 512 increases the discriminative performance of the system, so theerror rate falls. Beyond this, the generalization fails and performance fallso� rapidly. By 4000 clusters the system fails completely. The diagonal Ma-halanobis distance method gives slightly, but not signi�cantly worse results,and the full-covariance Mahalanobis distance gives worse results again. Thefull-covariance matrix codebook is prohibitively expensive, computationally,to work out for larger numbers of centroids. The lack of improvement is dueto the unusual distribution of the inputs which are nearly always zero, andoften one. The Mahalanobis distance is intended for modelling distributionswhich are Gaussian distributed, an assumption not true here.7.3.4 DiscussionThe best of these discrete probability estimators has 512 � 26 parameters |the same as a recurrent network with 64 feedback units. A network with60 feedback units achieves a 14.5% error rate. It can thus be seen that thepure HMM system does not perform as well as the hybrid recurrent net-work/HMM system. While this shows that the recurrent network is a morepractical solution to the problem of modelling the graphic data, it does notargue absolutely against the use of hidden Markov models. While much ofthe work of this thesis is equally applicable to both systems, more time hasbeen spent perfecting the recurrent network system than investigating im-provements in the pure HMM approach. It is undoubtedly true that withfurther investigation the HMM system could be improved. There is a set ofstandard techniques that could be taken from speech HMMs and applied tothis system, which could reasonably be expected to give better performance.These include giving di�erent states within a letter separate probability dis-tributions, and producing context-dependent models which would be ableto model the coarticulation between adjacent letters | most particularlythe ligatures which vary with di�erent contexts. However, similar methodsmight also be applied to the hybrid system.O�-line handwriting recognition 77



CHAPTER 7. RECOGNITION METHODS7.4 SummaryThis chapter has presented three methods of probability estimation whichcan be used for the problem of o�-line handwriting recognition, and has dis-cussed some of the issues involved in using them. The training of the modelshas also been discussed and recognition results presented. The recurrent net-works were found to perform better than both the discrete hidden Markovmodel and the time delay neural network. Training the recurrent networksis very time-consuming, but a number of methods have been used which re-duce the training time, including weight initialization, Jacobs' weight-updatescheme, and a training schedule which changes the size of weight-updatebatches during training.The next chapter completes the description of the system by explaininghow the probability estimates are used for word recognition.
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Chapter 8Hidden Markov modellingThe reading is right which requires so many words to prove it wrong.Samuel Johnson.The previous chapter described methods of modelling the graphical data of ahandwritten word. Each method gave an estimate of the likelihood P (xtj�i)for each frame of input xt and for each character class �i (of 26). This chapterdeals with the process of deriving the best word choice from a sequence ofthese frame probability distributions by the use of hidden Markov models.The methods described here apply equally to the pure discrete HMM and tothe recurrent network hybrid system, but tests are described for the hybridsystem since it was found to bemore e�ective. For the time being, the systemis assumed to have a known vocabulary and it is assumed that any wordpresented to it will be in that vocabulary.8.1 A basic hidden Markov modelBecause the data are noisy or ambiguous, the output of the whole systemshould be a probability distribution across the words in the lexicon, beingthe probability for any word that it was the one originally written. Nor-mally the probability should be close to one for one word, and close to zerofor the others, but where there is ambiguity, error or poor data, the dis-tribution might be more uniform. For instance, for the ambiguous word of�gure 3.1b, high, roughly equal probabilities would be expected for the threewords `clump', `jump' and `dump', with a lower probability for `lump' and smallprobabilities for other words. The probability distribution to be determinedis P (W jx�0) across all words W in the lexicon L, given the input data x�0.The individual frame probabilities are combined to produce word prob-abilities using a hidden Markov model (HMM). A good tutorial article onHMMs is that of Rabiner and Juang (1986). A separate HMM is createdfor each word in the known lexicon, with one state representing each let-ter. Figure 8.1 shows a model for the word `one'. If there are N states,the set of states is Q = fqr : r = 0; : : : ; N � 1g, corresponding to the lettersO�-line handwriting recognition 79



CHAPTER 8. HIDDEN MARKOV MODELLINGeo one��(t) �o(t) �on(t) �one(t)nFigure 8.1: A simple Markov model for the word `one' with onestate per letter.L(qr). The Markov model represents a process by which the writing couldhave been generated. Each circle in the diagram represents a state of themodel. At time t = 0 the model is in state q0, corresponding to the be-ginning of the word. At each time step t = 0; : : : ; � , a state transition ismade, following one of the arrows in the diagram. This means that eitherthe next state is entered, or a self-transition is made and the state at thesubsequent time step is the same as the current state. The state at timet is written St. In general a hidden Markov model can allow transitionsbetween any pair of states, but in handwriting, the order of the letters isknown and no letters can be missed out, so the model is made more re-strictive. To use the model, transition probabilities are assigned to each ofthe permitted transitions and are assumed to be independent of the time:ap;r = P (St+1 = qrjSt = qp); ap;r = 0 except when r = p or r = p + 1. Forthe model to be a true Markov model, all the transition probabilities aredependent solely on the current state. By this process, a state sequenceS = (S0; : : : ; S� ) is arrived at, which records the state at each time step. Atypical state sequence might be S = (q0; q0; q0; q0; q1; q1; q1; q2; q2; q2; q2; q2) cor-responding to the letter sequence L(S) = (o,o,o,o,n,n,n,e,e,e,e,e). Themodel is a hidden Markov model because S is not directly observable, onlyinferred. It is only the frames of data that are observed.In the generation process which is to be modelled, the system produces aframe of graphic data xt at each time step. The data are part of the graphicrepresentation of the letter signi�ed by the current state. The data are as-sumed to occur according to a probability distribution P (xtjL(St)), which isestimated by the recognition system of chapter 7. With this information anexpression can be derived for the probability of a word, given a particularobservation sequence x�0.The posterior probability of a word W can be rewritten using Bayes' rule:P (W jx�0) = P (x�0jW )P (W )P (x�0) ; (8.1)where P (W ) is the prior probability of the word occurring, which is discussedin section 8.4.2. The probability P (x�0) of the data occurring is unknown, butassuming that the word is in the lexicon L, the probabilities must sum to one,and can be normalized:XW2LP (W jx�0) = 1 (8.2)O�-line handwriting recognition 80



CHAPTER 8. HIDDEN MARKOV MODELLINGP (W jx�0) = P (x�0jW )P (W )PW2L P (x�0jW )P (W ) : (8.3)There are many state sequences representing any given word. WritingS(W ) = fS; such that S represents Wg; (8.4)then P (x�0jW ) = XS2S(W )P (x�0jS)P (S); (8.5)where the state sequence probability P (S) is the product of the initial distri-bution, �r = P (S0 = qr), and the subsequent transition probabilities:P (S) = �S0 ��1Yt=0 aSt;St+1: (8.6)Here �r = 0 for all states except the �rst (�0 = 1), so the model is constrainedto start with the �rst letter. Now, by Bayes' ruleP (x�0jS) = P (x0jS)P (x�1jS; x0) (8.7)= P (x0jS) �Yt=1P (xtjS; xt�10 ): (8.8)If it is assumed that the emission probability is dependent solely on theclass that the current state represents, this reduces to:P (x�0jS) = �Yt=0P (xtjL(St)); (8.9)which involves the terms P (xtjL(St)) stored in the tables of chapter 7. Aweaker assumption is that the emission probability is conditionally inde-pendent of preceding or following states, given the current state:P (x�0jS) = �Yt=0P (xtjSt; xt�10 ) (8.10)= �Yt=0P (xtjL(St); xt�10 ) (8.11)where, by further applications of Bayes' rule, it can be seen that:P (xtjL(St); xt�10 ) = P (L(St)jxt0)P (xt0)P (L(St); xt�10 ) : (8.12)Now P (L(St)jxt0) is exactly the posterior probability estimated by the recur-rent network. P (xt0) is the probability of the �rst few frames of data, whichis the same for all words. P (L(St); xt�10 ) is assumed to be proportional toO�-line handwriting recognition 81



CHAPTER 8. HIDDEN MARKOV MODELLINGP (L(St)), the prior probability of a frame belonging to the class L(St). Thisassumption is clearly incorrect, but is found to work in practice. This prob-ability can be estimated by counting the number of frames in each class ac-cording to the labels of the training set.Thus there are two expressions for the likelihood L(W jx�0) of a word, whichcan be normalized to give word probabilities:P (W jx�0) = L(W jx�0)PW L(W jx�0) (8.13)L(W jx�0) � P (W ) XS2S(W ) �Yt=0P (xtjL(St))! �S0 ��1Yt=0 aSt;St+1! (8.14)L(W jx�0) � P (W ) XS2S(W ) �Yt=0 P (L(St)jxt0)P (L(St)) ! �S0 ��1Yt=0 aSt;St+1! : (8.15)Equation 8.14 is used for the table look-up system and equation 8.15 is usedfor the recurrent network. For simplicity, the likelihoods P (xtjL(St)) are usedhenceforth, but the scaled likelihoods P (L(St)jxt0)P (L(St)) are to be understood whenthe equations are applied to the recurrent network system.These expressions can be calculated e�ciently using the principle of Dy-namic programming, in an array structure representing the states of theMar-kov model. In this model, each state is accorded a probability �r(t), whichis the probability of being in state r after t frames have been observed.Thus�r(0) = �r the initial distribution.As successive frames of data are fed into the recognizer, and characterprobabilities are generated, the Markov model forward probabilities are cal-culated recursively by the formula:�r(t+ 1) = Xp �p(t)P (xtjL(qp))ap;r (8.16)until all have been processed. At this point the �nal state (dashed in �g-ure 8.1) contains P (x�0jW ) = �n(� + 1), the likelihood that the data x�0 repre-sented the word of this model. By choosing the maximum of the likelihoods,argmaxWL(W jx�0), if the models are good, a good estimate of the identity ofthe original word is obtained.All of these probabilities are stored and multiplied in the log domain forspeed and numerical accuracy. Multiplications become additions in the logdomain. Probability additions can be calculated by using the identitylog(a+ b) � log a+ log(1 + exp(log b� log a)); (8.17)and deriving the second term from a look-up table, as described by Brown(1987).O�-line handwriting recognition 82



CHAPTER 8. HIDDEN MARKOV MODELLING8.1.1 LabellingIt will be recalled from chapter 4 that the database consists of both upper andlower case letters as well as punctuation. In fact the punctuation is excludedin the segmentation process, so only word images are passed to the prepro-cessing system, and no recognition of punctuation is carried out. If this weredesired, a separate system for recognizing punctuation marks would be nec-essary. As punctuation marks appear in isolation and are largely de�ned bylocation, the recurrent network apparatus would be inappropriate. A muchsimpler system could be used, perhaps based on rules for the location andcontour shape of punctuation marks.The system described here gives a distribution across the 26 letter cate-gories, and makes no distinction between upper and lower case letters. An`a' and an `A' are both labelled the same, and the network is trained to givethe same output for either. There are not enough examples of capital lettersin the database to train a network with separate output classes for both up-per and lower case letters, since capitals only occur at the beginning of a fewwords and in a few acronyms. Indeed, the current system recognizes capitalletters poorly, but since they are generally only initial letters, recognition isstill possible based on the remaining letters and the constraints of the lim-ited vocabulary. Testing a 160-unit network with a grammar gave an 8.8%error rate, but among words with capitals the error rate was 35%. The aver-age rank in the lexicon of incorrectly recognized words with capitals was 96,compared to 15 for incorrect words without capitals. More data with capitalletters would improve the recognition rate on capital letters, bringing downthe overall error rate.If more data were available, and distinction between upper and lowercase were required, the network could be given 52 outputs to represent theupper and lower case letters. However, it might be better (because the net-work size would be kept down) to keep just 26 output categories, and havea separate unit indicating the case of the letter. Such a unit would give anindependent probability, with a sigmoid output (equivalent to the two-classsoftmax). When using such a system, the hiddenMarkov models would needto be adapted to account for the separate classes and, according to the task,models with initial capitals, full capitals or even mixed case words could bepermitted.Some systems (Schenkel et al. 1994) have a `noise' output class to allowthe network to indicate that the inputs do not correspond to any of the letterclasses. Such a class could be used in this system to represent poor writingor the ligatures between letters, but the implementation would be di�cultsince there is no noise or ligature class in the labelling of the training data.Since the system accepts cursive and discrete writing, the data would need tobe hand-labelled to indicate the presence of ligatures. If such hand-labellingwere done, then an optional ligature model could be inserted between theletter models of each word. A noise model could be placed in parallel withO�-line handwriting recognition 83



CHAPTER 8. HIDDEN MARKOV MODELLINGthe letter models to allow letters to be skipped when there was somethingillegible in the input. Since few frames contain only ligatures, and the dataused here were clean, these ideas were not implemented.8.1.2 DecodingIn practice, most of the state sequences S are highly improbable, and se-quences such as L(S) = (o,o,o,o,o,o,o,o,o,o,n,e) are going to contributelittle to the probability of the word. In fact, in most cases, it can be said thatthere will be a small number of similar state sequences which are much morelikely than all the others. Also, the single most likely sequence, S�, will besimilar to all of these, and can be considered to be representative. Thus, agood approximation to equation 8.5 is:P (x�0jW ) / P (x�0jS�)P (S�): (8.18)Carrying out decoding on only the most likely state sequence is calledViterbi decoding. In this case, the decoding is simpler. A di�erent set oflikelihoods, �0, is stored:�0r(t+ 1) = maxp �0p(t)P (xtjL(qp))ap;r: (8.19)These likelihoods can be computed more quickly than the full probabilities,�, and are found to give better results for this handwriting recognition system(T (2) = 9:72; t:99(2) = 6:96). Comparative results are given in table 8.1.Decoding Error rate (%) Decoding timemethod �̂ �̂ per word (s)Viterbi 17.0 0.68 1.32Full 20.4 0.82 1.65Table 8.1: A comparison of error rates and decoding times for�ve 80-unit networks trained on Viterbi segmentations, andtested with Viterbi or full decoding.8.2 Duration modellingThis section investigates how the transition probabilities ap;r in equation 8.6can be chosen so thatwords aremodelled as well as possible, and to give opti-mum recognition performance. As a �rst approximation, it could be said thatall state sequences are equally likely, and so all the transition probabilitiescould be made identical (ap;p = ap;p+1 = 12 8p). Since a �xed number of framesis being decoded, any state sequence would have probability P (S) = (12)(�+1).O�-line handwriting recognition 84



CHAPTER 8. HIDDEN MARKOV MODELLINGIn this case the state sequence probability has no e�ect on the recognition,and the word probabilities depend entirely on the observed data, taking noaccount of whether the state sequence is reasonable for the word.Practically, though, a number of improvements can be made to the tran-sition probabilities to make the Markov models model the true durationsof letters much better. Hochberg (1992) has used similar techniques for themodelling of HMM state durations in speech recognition. In the simple, one-state-per-letter model of �gure 8.1, the transition probabilities for dwellingin a given state or exiting to the next state in a word (p and q = 1� p respec-tively) can be adjusted. The obvious choice is to arrange for the expectedduration of the model to be equal to the mean observed duration of a letter:q = 1=dav. In fact, in such a simple model, this will merely tend to favourlong or short words depending on whether p > q or not, because for a wordof � letters, P (S) = p(�+1)( qp)�. Adjusting the mean length of each model in-dividually gives improved modelling, but to start to obtain accurate modelsof the lengths of letters, the duration distribution needs to be examined.The duration distribution speci�es the probabilities P (n) 8n > 0 of re-maining in the state for n frames. The duration distribution of the simplemodel of �gure 8.1 is geometric, as in the solid line of �gure 8.2.P (n) = pn�1q (8.20)This does notmatch the duration distributions found in practice (shown in thedotted line of the �gure). Better performance (ultimately in terms of reducederror rates) is to be expected if P (S) can be modelled more accurately.8.2.1 Enforcing a minimum durationIt is found that poor modelling often results from passing through a model ina single time step, when the datamatch the currentmodel very badly, thougha single letter is very rarely contained in a single frame of data. Although theprobability of such a short duration will be very low, this can be outweighedby the increase in the data probability. To avoid this problem, a minimumduration dmin � 1 is enforced. This forces P (n) = 0 for n < dmin.Several methods have been used to choose the minimum duration of aletter model. The �rst is to choose dmin to be the smallest duration observedin the training set, but this is subject to noise, particularly since the durationsare determined automatically. A better method seems to be to choose dmin =dav=2, though other similar methods work just as well.The simplest method of implementing a minimum duration is to repeateach of the states in a given model, as shown in �gure 8.3. The graphic dataprobabilities are the same for all the states in each class (i.e. the emissionprobabilities are tied). The operations for calculating the likelihoods � areexactly the same, but there are twice as many. When Viterbi decoding, thisresults in a minimum duration dmin, longer durations having probabilitiesO�-line handwriting recognition 85



CHAPTER 8. HIDDEN MARKOV MODELLING
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1 state2 states, Viterbi2 states, fullObservedDuration (frames)ProbabilityFigure 8.2: Probability distributions for the simple Markovmodels, compared with observed `�' durations.eo e onennoFigure 8.3: A Markov model for the word `one' with two statesper letter.given by the geometric distribution. The probability of remaining in such amodel for n frames is given by:P (n) = ( pn�dminqdmin n � dmin0 otherwise (8.21)q = 1dav � dmin + 1 (8.22)where dav is the average duration of a letter determined from the trainingset. In fact these are likelihoods, and the normalized probabilities areP (n) = ( pn�dminq n � dmin0 otherwise: (8.23)Robinson (1994), for example, uses geometric distribution models of thisform to enforce minimum phone durations in speech recognition.When doing full (as opposed to Viterbi) decoding, where multiple pathsare permitted, the distribution given by this model is no longer geometric,but P (n) = ( Cn�1dmin�1pn�dminqdmin n � dmin0 otherwise (8.24)q = dmindav : (8.25)O�-line handwriting recognition 86



CHAPTER 8. HIDDEN MARKOV MODELLINGThis distribution is closer to the observed distribution (�gure 8.2), but by bet-ter modelling of the whole of the probability distribution, the performancecan be increased still further.8.2.2 Parametric distributions Pdwell m21 3 P (m)P (1) P (2) P (3)Figure 8.4: A complex duration model with m states for oneletter.More detailed modelling of the duration probability distribution can be ac-complished with a more complex model, shown in �gure 8.4. Here, eachletter is represented by m states. The �rst m� 1 states correspond to letterdurations of from 1 to m� 1 frames. From each of these states, the only per-mitted transitions are onto the next state of the same letter or onto the �rststate of the next letter. The transitions to the next letter are thus labelledwith the duration probabilities P (n). The �nal state has a dwell loop whichgives the distribution a geometric tail. The probability pdwell is adjusted tomake the exit probabilities sum to one:m�1Xn=1 P (n) + 1Xn=mP (m)P n�mdwell = 1: (8.26)The remaining transitions are given probability one. While this makes thesum of the probabilities at any node not equal to one, the sum of the prob-abilities of transition out of the model is one, so the duration of the modelis described by a probability distribution. In fact, by normalizing appropri-ately, the same model duration distribution can be maintained while makingthe sum of probabilities at each state equal to one, but the form describedhere is clearer.The more states in the model, the more accurately a given probabilitydistribution can be modelled. Withm states the model is perfect up to n = m,and follows a geometric distribution thereafter. However, the decoding timeis proportional to the number of states, so the length of the model must bechosen from a trade-o� between accuracy and speed. Table 8.2 shows thee�ect that model length has on recognition accuracy.The duration distribution could be made to follow exactly the observedduration histogram from the training data. Without large quantities of data,O�-line handwriting recognition 87



CHAPTER 8. HIDDEN MARKOV MODELLING
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GeometricPoissonGammaObservedDuration (frames)ProbabilityFigure 8.5: Probability distributionsfor three duration models, com-pared with the histogram of ob-served `�' durations. Figure 8.6: The same with a forcedminimum duration of 3 frames.however, these distributions are noisy, so a parametric probability distri-bution is used which �ts the observed histogram well. In this work, threeduration models have been investigated | based on the geometric, Poissonand gamma distributions. In each of these cases, the parametric distribu-tion is used to calculate the probability of being in a letter model for a givennumber of frames. Each of these distributions can be shifted to impose aminimum duration dmin � 1.The Poisson distributionEven for the case dmin = 1, the Poisson distribution is shifted, since for thetrue Poisson distribution, P (0) 6= 0.P (n) = 8><>: e���n�dmin(n�dmin)! n � dmin0 otherwise (8.27)� = dav � dmin: (8.28)Schenkel et al. (1994) have recently used the Poisson distribution for durationmodelling in on-line handwriting.The gamma distributionThis distribution is parametrized by two parameters � and � which determinethe mean and variance. The values of � and � are set according to the methodO�-line handwriting recognition 88



CHAPTER 8. HIDDEN MARKOV MODELLINGof moments: � = �� dmin + 1�2 (8.29)� = (�� dmin + 1)2�2 (8.30)P (n) = 8><>: ��(n+1�dmin)��1e��(n+1�dmin)�(�) n � dmin0 otherwise: (8.31)8.2.3 ResultsSample error rates and recognition times are shown in table 8.2. It can beseen that enforcing a minimum duration of 2 in the geometric model re-duces the error rate, but further increases impair the performance. Both ofthe complex duration models perform better than the geometric distribu-tion models, and the gamma distribution performs better than the Poisson(T (34) = 4:49; t:999(34) < 3:14). Modelling longer durations more accuratelyby adding states improves the performance but the returns diminish and thecomputation time increases. Comparing the 2 and 8 state gamma distribu-tions shows a signi�cant reduction in error rate (T (4) = 3:28; t:975(4) = 2:78),but comparing 8 and 12 state gamma distributions does not (T (4) = 0:16).The 8 state gamma distribution is used in other experiments throughout thisthesis.One speci�c way in which the better modelling is manifested is in dis-tinguishing between single and double letters. In the geometric model, fora given set of data, there is no di�erence between the probabilities for themodels `reed' and `red' for example if the duration of the `�' is longer than theminimum duration of the two `e' models. However, with the more complexdurationmodels, those with double letters will have di�erent probabilities tothose with single letters. In the `reed/red' example, `red' will have a higherprobability than `reed' if the number of frames with high `e' probabilities isaround the mean duration of an `�', lower if there are more than double themean.8.3 Target re-estimationHaving trained the network for some time, it has a good estimate of theprobability of each frame belonging to any letter. Given the correct word,the best state sequence S� for this word represents a segmentation givinga new label for each frame. For a network which models the probabilitydistributions well, this segmentation will be better than the automatic seg-mentation of section 7.1.2 since it takes the data into account. Finding themost probable state sequence S� is termed a forced alignment. Since onlythe correct word model need be considered, such an alignment is faster thanO�-line handwriting recognition 89



CHAPTER 8. HIDDEN MARKOV MODELLINGDuration Number Error rate (%) Recognitionmodel of states �̂ �̂ time per word (s)Geometric 1 18.2 0.97 0.42Geometric 2 16.6 0.92 0.62Geometric 3 17.1 1.00 0.91Geometric 4 26.1 0.79 0.91Poisson 2 16.5 0.94 0.55Poisson 3 16.4 0.82 0.83Poisson 4 16.3 0.76 0.91Poisson 6 16.1 0.82 1.43Poisson 8 16.2 0.86 1.65Poisson 10 15.9 0.79 2.14Poisson 12 15.7 0.74 2.49Gamma 2 16.5 0.92 0.55Gamma 3 16.4 0.90 0.83Gamma 4 15.9 0.69 0.91Gamma 6 15.7 0.78 1.43Gamma 8 15.6 0.72 1.65Gamma 10 15.5 0.77 2.14Gamma 12 15.5 0.81 2.49Table 8.2: Sample performance �gures for the di�erent durationmodels.the search through the whole lexicon required for recognition. Training onthis automatic segmentation gives a better recognition rate, but still avoidsthe necessity of manually segmenting any of the database.Figure 8.7 shows three di�erent segmentations of the word `�b¦��r'. First(a) shows the segmentation arrived at by taking the most likely state se-quence when using an 8 state gamma distribution Markov model, but withan untrained network, so the graphic data has no e�ect on the segmenta-tion. This is similar to the `equal length' segmentation used to bootstrapthe system. (b) shows the e�ect of removing the duration model. There isnow nothing to distinguish between the state sequences, except slight dif-ferences in the network's probability estimates due to initial asymmetry, soa poor segmentation results. After training the network (c), the durationsdeviate from the prior assumed durations to match the observed data. Thisre-estimated segmentation represents the datamore accurately, so gives bet-ter targets towards which to train.Having trained one network, the segmentations can be stored with thedata �les and used to train new networks, avoiding the less-accurate, equal-length segmentations and speeding up training. However, after completingtraining on these �xed targets, a further small improvement in recognitionaccuracy can be obtained by using the targets determined by the new net-work's own re-estimation of the segmentation.O�-line handwriting recognition 90
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1 b relu t(c)Figure 8.7: Viterbi segmentations of the word `�b¦��r'. Eachline represents one letter �i and is high for the frames t whenS�t = �i. (b) is a segmentation with an untrained network andno duration model. (a) shows the e�ect of adding an eight stategamma distribution duration model, and is similar to the `boot-strap' segmentation. (c) is the segmentation re-estimated witha fully trained network and a duration model. For clarity, thesegments are not labelled in (b).The e�ects of this can be seen in the graph of relative entropy againstnumber of epochs (�gure 7.7). After a plateau indicating convergence, train-ing on the �xed targets is stopped according to the stopping criterion. Train-ing on the network's segmentation re-estimation is then begun and a steeperdrop in relative entropy is seen. The relative entropy falls signi�cantly be-cause the new segmentation is that which is closest (within the constraintsof the duration modelling, and the correct word model) to that indicated bythe network's output probabilities. Thus the relative entropy of the outputand target distributions will immediately be lower when the new segmenta-tion is adopted. Thereafter, a new segmentation is calculated at every epochand the network adapts its parameters in accordance with this segmentation.The relative entropy continues to fall. Similar e�ects can be seen in the graphof error rate against number of epochs (�gure 7.6), but the e�ect is largelymasked by noise.Table 8.3 shows word recognition error rates for three 80-unit networkstrained towards �xed targets estimated by another network, and then re-trained, re-estimating the targets at each iteration. The retraining improvesthe recognition performance (T (2) = 3:91; t:95(2) = 2:92).O�-line handwriting recognition 91



CHAPTER 8. HIDDEN MARKOV MODELLINGTraining Error (%)method �̂ �̂Fixed targets 21.2 1.73Retraining 17.0 0.68Table 8.3: Error rates for 3 networks with 80 units trained with�xed alignments, then retrained using individually re-estimatedalignments.8.3.1 Forward-backward retrainingThe system described above performs well, but examining the speech recog-nition literature, a potential method of improvement can be seen. Viterbiframe alignments have so far been used to determine targets for training.These assign one class to each frame, based on themost likely state sequence,but a better approach might be to allow a distribution across all the classesindicating which are likely and which are not, avoiding a `hard' classi�cationat points where a frame may indeed represent more than one class, or none(as in a ligature). A `soft' classi�cation would give a more accurate portrayalof the frame identities.Such a distribution can be calculated with the forward-backward algo-rithm (Rabiner and Juang 1986). To obtain the distribution 
p(t) = P (St =qpjx�0;W ), the forward probabilities �p(t) must be combined with the back-ward probabilities �p(t) which represent the probability of observing framesx�t+1 when starting in state p at time t. The backward probabilities are calcu-lated similarly to the forward probabilities of equation 8.16:�p(t� 1) = Xr �r(t)P (xtjSt = qr)ap;r: (8.32)A suitable �nal distribution �r(� ) = �r is chosen, e.g. � = 1 for the lastcharacter only. The likelihood of observing the data x�0 and being in state qpat time t is then given by:�p(t) = �p(t)P (xtjSt = qp)Xr ap;r�r(t+ 1): (8.33)Then the probabilities 
p(t) of being in state qp at time t are obtained bynormalization: 
p(t) = �p(t)Pr �r(t):These probabilities are used as targets for the recurrent network outputs.Figure 8.8a shows the initial estimate of the class probabilities for a sam-ple of the word `�b¦��r'. The probabilities shown are those estimated by theforward-backward algorithmwhenusing an untrainednetwork, for which theP (xtjSt = qp) will be independent of class. Despite the lack of information,O�-line handwriting recognition 92



CHAPTER 8. HIDDEN MARKOV MODELLINGthe probability distributions can be seen to take reasonable shapes. The �rstframe must belong to the �rst letter, and the last frame must belong to thelast letter, of course, but it can also be seen that half way through the word,the most likely letters are those in the middle of the word. Several classprobabilities are non-zero at a time, re
ecting the uncertainty caused sincethe network is untrained. Nevertheless, this limited information is enoughto train a recurrent network, because as the network begins to approximatethese probabilities, the segmentations become more de�nite. In contrast,using Viterbi segmentations with no duration model for an untrained net-work, themost likely alignment can be very di�erent from the true alignment(�gure 8.7b). The segmentation is very de�nite though, and the network istrained towards the incorrect targets, reinforcing its error.The process of training a network can be speeded up by enforcing a strongduration model, as shown in �gure 8.8b, which gives more pronounced peaksin the probabilities for individual letters, because the durationmodel reducesthe uncertainty in their length and location. Figure 8.8 c,d shows the e�ectthat dividing by the class prior probability has on the segmentation. With noduration model, the segmentation is distorted, but when the duration modelis imposed, the segmentation is better (stronger peaks, which overlap less)than before dividing by the class prior.
0 5 10 15 20 25 30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 b reu t l
0 5 10 15 20 25 30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1(a) (b)
0 5 10 15 20 25 30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
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1(a) (b)Figure 8.9: Baum-Welch segmentations of the word `�b¦��r'using trained networks. (a) has the geometric duration modeland (b) has an eight-state gamma distribution duration model.the transitions between letters. This uncertainty, where a frame might trulyrepresent parts of two letters, or a ligature between two, allows the net-work trained with the forward-backward algorithm and tested using full for-ward probabilities to give improved recognition results over a network usingViterbi alignments and testing. The improvement is shown in table 8.5. The�nal probabilistic segmentation can be stored with the frames of data in thesame way as the Viterbi segmentation was, and used when subsequent net-works are trained on the same data. Training is then signi�cantly quickerthan when training towards the approximate bootstrap segmentations.Table 8.4 shows word recognition error rates for 80-unit networks trainedtowards �xed Baum-Welch targets estimated by another network, and thenretrained, re-estimating the targets at each iteration. As with the corre-sponding Viterbi alignments (�gure 8.3) the retraining improves the recogni-tion performance (T (4) = 3:11; t:975(4) = 2:78).Training Error (%)method �̂ �̂Fixed targets 16.9 0.75Retraining 15.6 0.72Table 8.4: Error rates for 5 networks with 80 units trained withBaum-Welch alignments, then retrained using re-estimatedalignments.Table 8.5 shows a comparison between the use of Viterbi and full prob-abilities when training and decoding. It can be seen that the error rates forthe networks trained with Baum-Welch targets are lower than those trainedon Viterbi targets (T (2) = 5:24; t:975(2) = 4:30). As seen in table 8.1, theerror is lowest if the system is tested with Viterbi rather than full decod-ing. For Baum-Welch targets, the di�erence is smaller but still signi�cant(T (4) = 4:94; t:995(4) = 4:60).Baum-Welch retraining is the standard method of retraining the discreteMarkov model, and the tables in section 7.3.3 refer to models retrained withO�-line handwriting recognition 94



CHAPTER 8. HIDDEN MARKOV MODELLINGTraining Error (%)method Viterbi decode Full decode�̂ �̂ �̂ �̂Viterbi 17.0 0.68 20.4 0.82Baum-Welch 15.4 0.74 15.6 0.72Table 8.5: Error rates for networks with 80 units trained withViterbi (3 networks) or Baum-Welch (5 networks) alignments,then tested using Viterbi or full probability decoding.Baum-Welch. The network estimations used to prime the training are gen-erally better than those of the discrete HMM, so only a small improvementis seen by retraining.8.4 Language modellingI am not yet so lost in lexicography : : : Samuel Johnson.One areawhere great gains in recognition accuracy can bemade is by languagemodelling, as can be seen from the wealth of literature on this area fromthe �eld of speech recognition (Waibel and Lee 1990:ch.8). The system asdescribed so far has a language model built in in the form of a �xed lexiconwhich limits the search to a set L of permitted words.8.4.1 Vocabulary choiceThe lexicon used so far was chosen to be the union vocabulary of the train-ing, test and validation sets, so that any word in the corpus would be in thelexicon. In practice, the lexicon size would be dictated by the task to be dealtwith. In an application such as reading cheques, the vocabulary size would bearound 35 words, comprising numbers, currency units, `and' and so forth. Onthe other hand, for transcribing longhand documents, the vocabulary wouldneed to be tens of thousands of words, to cover nearly all the words likelyto occur. The size of the vocabulary a�ects the performance of any recogni-tion system because when it is large, words similar to the correct word aremore likely to be permitted. For instance, in a cheque application the word`hundred' is unlike all the other words, but `hounded' might be necessary in alarge vocabulary system, increasing the likelihood of confusion.In postal applications, the potential vocabulary is large, containing allstreet, city, county and country names, but a system might be required toidentify only the city or only the state name, these having been segmentedfrom the address block. The vocabulary is now much smaller, making thetask easier. In fact, the main reason for using cursive script in address read-ing is to disambiguate confusions in reading the zip code. If the zip codeO�-line handwriting recognition 95



CHAPTER 8. HIDDEN MARKOV MODELLINGis reliably read, the city will be known, but if one, two or three digits areuncertain, the vocabulary will re
ect this uncertainty and rise to ten, a hun-dred or a thousand potential city names. (If the correspondence betweenzip codes and cities is not one-to-one, the vocabulary size will vary, but thisis a rough guide.) Thus these are reasonable vocabulary sizes for testing apostal system, with the vocabulary being dynamically chosen from a longerlist according to the cities matching the known digits of the zip code.Lexicon Error rate (%) Time persize �̂ �̂ word (s)501 13.3 0.72 0.221048 16.1 0.73 0.332155 18.3 0.73 0.614554 20.8 0.72 1.279733 23.7 0.72 2.83Table 8.6: Error rates from testing �ve 80-unit networks on lex-ica of di�erent sizes.To test the e�ect on error rate that the lexicon size has, experiments havebeen conducted with lexica containing di�erent numbers of words. Table 8.6and �gure 8.12 show the results of these experiments. The lexica are createdby taking the vocabulary of the test-set (447) and adding to that the mostfrequent words from the LOB corpus that were not already included. Thisensures that the correct word is always in the lexicon, but allows lexica from447 to 10,000 words to be tested. In practice, the lexica were made fromapproximately 500, 1000, 2000, 4000 and 8000 words, but including all wordssharing the lowest frequency needed to make up the total, meant that these�gures were exceeded in each case. This experiment corresponds to one doneby Schenkel et al. (1994) who similarly construct lexica including all the test-set words. They make up the total with words chosen randomly from a largedictionary which will tend to be longer, and thus less confusable than themost frequent words. The 501 word error rate is lower than those quotedbefore, because of the smaller lexicon size, but later lexica give more errorsbecause of the increase in similarity between the permitted words. Becausethe most common words were added, and since these are the shorter wordswhich the system tends to confuse, the results are worse with this 1048 wordlexicon than with the usual 1334 word lexicon (15.6%).8.4.2 GrammarsAfter considering the vocabulary of the system, the next level of complexityin language modelling is to impose a grammar on the words, to limit whichwords are permissible in a given context or to account for the frequenciesof di�erent words. The simplest form is termed a `unigram' grammar, andsimply involves determining the probability of a word occurring, and usingO�-line handwriting recognition 96



CHAPTER 8. HIDDEN MARKOV MODELLINGthat as the P (W ) term of equation 8.1. The probabilities are determined byfrequency counts in a corpus of data, for instance in the whole LOB corpus(less the training set) or just on the training set. One problem with de�n-ing stochastic grammars is that words in the grammar may not occur in thedatabase available for training the grammar. Complex smoothing techniquesexist, but here the simple expedient of assigning a frequency count of one tounobserved words is adopted.
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CHAPTER 8. HIDDEN MARKOV MODELLINGdetermined, giving the bigram grammar P (WtjWt�1). For pairs of words notobserved in the corpus, the unigram grammar must be used instead. Morecontext can be used, as in the general n-gram grammar P (WtjWt�1; : : : ;Wt�n),and parsing sentences during recognition can give information about whatparts of speech are possible or likely in the next word. Kuhn and de Mori(1990) describe a method of caching recently used words as these are morelikely in the following text, and Jelinek (1991) discusses other methods oflanguage modelling. The present system considers each word in isolation,so none of these more complex schemes has been implemented, though theywould be appropriate for a system transcribing sentences. Cheque amountsand postal addresses have a simple structure for which a restrictive grammarcan be written to signi�cantly reduce the number of words that need to beconsidered at the next stage.Grammar Entropy PerplexityNo grammar 10.38 1334Grammar based on training set only 8.96 500Grammar based on whole of LOB corpus 9.72 845Table 8.7: Entropy and perplexity of grammars for the LOB cor-pus.All grammars are used to limit the choice of words, and so improve therecognition rate. A crude method of quantifying how e�ective a grammar Gis, is to measure its perplexity Q(G) (Lee 1989:p.145). This is the averageover all words of the number of permitted successor words. For a unigramgrammar, this is simply two to the power of the entropyH(G) of the unigramprobability distribution, measured in bits:H(G) = � XW2LP (W ) log2 P (W ) (8.35)Q(G) = 2H(G): (8.36)Lee notes that this \does not re
ect the uncertainty encountered when de-coding." If the grammar does not re
ect the actual frequencies of the wordsin the test set, then the perplexity is a poor guide to the grammar's utility.A better measure is the test set perplexity Qtest(G) calculated from the crossentropy of the test set, given the grammar (Charniak 1993:p.34):Htest(G) = � XW2LPtest(W ) log2 P (W ) (8.37)Qtest(G) = 2Htest(G); (8.38)where Ptest(W ) is the proportion of the test set that word W represents, notthe unigram probability P (W ). (Where test set words are not in the lexicon,as in section 8.4.4, Ptest(W ) is calculated as a proportion of the in-vocabularyO�-line handwriting recognition 98



CHAPTER 8. HIDDEN MARKOV MODELLINGLexicon Perplexity Error rate (%)size No grammar Unigram1334 500 15.6 14.51334 845 15.6 15.6501 742 13.3 13.81048 921 16.1 15.52155 1029 18.3 16.84554 1119 20.8 17.79733 1188 23.7 18.7Table 8.8: Error rates from testing �ve 80-unit networks on lex-ica of di�erent sizes. The 1334 word lexicon is tested with thetraining set grammar and the LOB corpus grammar.words.) This perplexity measure indicates how useful the grammar is at lim-iting the choice of words to those in the test set, which is the function thatthe grammar should perform.Sample test-set perplexities are seen in tables 8.7 and 8.8. The unigramsfor the lexica with lengths other than 1334 are estimated on the LOB cor-pus excluding the test set. Because of the mismatch between the test setdistribution and the unigram probabilities, the perplexity for the 501 wordvocabulary is higher than the lexicon size, and the 1334 word grammar esti-mated on the LOB corpus has a higher perplexity than that estimated on thetraining set. The e�ect of using these grammars for recognition is shown intable 8.8. It can be seen that using a grammar decreases the error rate in allcases except with the 501 word lexicon when the perplexity of the grammaris higher than the lexicon size (�gures 8.12 and 8.13). The test set perplex-ity can be seen to indicate the e�ectiveness of the grammar reasonably well.This is highlighted in �gure 8.14 where the recognition rate is seen to be pro-portional to the log perplexity for each of the types of lexicon and grammarused, though the slopes di�er between the grammar types.8.4.3 Experimental conditionsAt this point, the whole of the standard test system has been described, andit is now possible to summarize the conditions used for earlier experiments.These conditions are used everywhere except as noted in individual experi-ments. The typical conditions are as follows:Normalization Slope correction; Srihari and Bo�zinovi�c's slant estimate; Zhangand Suen's thinning algorithm.Representation Uniform horizontal quantization; 7 band vertical quantiza-tion; skeleton coding at four angles; turn, endpoint, junction and dotfeatures; eleven snake features.O�-line handwriting recognition 99
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CHAPTER 8. HIDDEN MARKOV MODELLINGIt will be noted that these conditions are not the optimal conditions foundso far. Improvements can be made by: using the Canny slant estimate; in-creasing the number of feedback units; using the unigram grammar and usingnon-uniform quantization. Subsequent experiments described in this chapteruse all of these enhancements, but the network size is limited to 160 feed-back units | the largest network trained on the non-uniformly quantizeddata set. Error rates for this network are shown in table 8.9.Conditions Error rate (%)Before retraining, no grammar, full decoding 11.6After retraining, no grammar, full decoding 9.6After retraining, perplexity 500 grammar, full decoding 9.2After retraining, perplexity 500 grammar, Viterbi 8.8Table 8.9: Error rates when testing a 160-unit network on the1334 word vocabulary.8.4.4 CoverageIn most applications, there is a chance that the recognizer will be asked toidentify a word that is not in the lexicon. A cheque amount could be �lled inincorrectly, or a large vocabulary system might be presented with a propername or neologism which would not be in the lexicon. Thus a system mustbe able either to recognize words not in the vocabulary (the next sectiondescribes one method of doing this), be condemned to incorrectly classifythese non-words or 
ag that there was an out-of-vocabulary word for humanproof-reading.In the case where out-of-vocabulary words are not errors, and the systemshould be able to classify them, the vocabulary is termed `open', in contrastto the `closed' vocabulary task assumed above. For an open vocabulary task,the issue of coverage must be addressed | the proportion of words in a textwhich are in a recognizer's lexicon. If there is no method of recognizing out-of-vocabulary words, then this �gure is an upper bound on the proportion ofwords that the recognizer can classify correctly. Some sample coverages forthe LOB corpus with lexica of di�erent sizes are shown in table 8.10. In eachcase, the lexicon is made of the n most frequent words from the LOB corpus.It should be noted that the coverage �gures for the larger lexica are arti�ciallyhigh because the lexica are derived from the corpus on which coverage isassessed. On any other corpus, coverage would 
atten o� more for largerlexica. The coverage proportions are compared with the performance of the160-unit network of section 8.4.3.These results are shown graphically in �gure 8.15. It can be seen that, asthe lexicon size increases, the recognition rate increases, though it does notrise as fast as the test set coverage rate which is the optimal performance.As a measure of how well the system is performing compared to this upperO�-line handwriting recognition 101



CHAPTER 8. HIDDEN MARKOV MODELLINGLexicon Coverage (%) Error rate (%) Test-set Decoding timesize n LOB Test Test set In lexicon perplexity per word (s)2 9.9 10.9 89.1 0.0 1.9 0.764 15.5 14.9 85.1 0.6 3.5 0.768 21.9 22.1 78.6 3.6 7.2 0.7716 28.4 28.7 73.7 8.6 12.6 0.7732 36.5 36.1 66.5 7.4 22.0 0.7864 44.6 43.7 59.8 8.1 37.2 0.80125 51.8 51.9 53.2 10.0 61.9 0.85250 58.6 58.3 47.5 10.1 94.8 0.96500 65.4 66.8 39.8 9.9 156.6 1.191000 72.6 72.5 34.3 9.5 226.1 1.682000 79.7 81.0 27.4 10.3 369.7 2.704000 86.6 88.5 20.4 10.1 571.6 4.9310000 93.8 94.1 16.0 10.9 822.8 11.820000 97.5 97.7 13.9 11.9 1048.2 23.930000 99.0 99.3 12.6 12.0 1179.4 36.8Table 8.10: Coverage rates for lexica composed of the n mostfrequent words from the LOB corpus, on the LOB corpus as awhole, or on the LOB test set. The latter �gure is the upperbound on the number of words correct. Error rates are shownas a percentage of words incorrect in the test set and as a per-centage of the maximum potential words correct. Recognitiontimes per test word are shown.bound, the in-lexicon error rate is also plotted. This is the proportion of in-vocabulary words (which the system could have correctly identi�ed with thatlexicon) which are misclassi�ed. This rises from 0% with two words (all words`the' and `of' are correctly classi�ed) to 12% with a 30,000 word vocabulary.8.4.5 Search issuesIn the system described here, which has not been optimized for speed, witha large lexicon the majority of the recognition time is spent calculating the �probabilities in the hidden Markov model rather than estimating the poste-riors in the recurrent network. Since there is one model per word, the searchtime increases linearly with the length of the lexicon (as can be seen in ta-ble 8.10 where the recurrent network takes approximately 0.76s per word,plus 10-3s per lexicon item). For a development system with a 1000 wordvocabulary this is tolerable, but for larger vocabularies there are a numberof strategies which must be implemented to increase the speed. None ofthese has yet been implemented in the system, but all could be added sim-ply. Patience was the only strategy adopted for the few large-vocabularytests described here.O�-line handwriting recognition 102
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CHAPTER 8. HIDDEN MARKOV MODELLING
p r o o fu d proudproofo s t post

Figure 8.17: Three words from a lexicon stored as a tree to re-duce the calculation time in decoding.8.5 RejectionAnd none can read the text | not even I.Merlin in Tennyson's Idylls of the King.The results quoted so far have all been error rates, where each word is clas-si�ed by the recognizer and, according to its label, determined to be corrector incorrect. This is the performance measure which must be used for anynon-interactive text transcription system, for it is the number of errors thatis signi�cant. For an application that allows some human intervention, how-ever, a mechanism for rejection can be used. If a measure of con�dence forthe system's classi�cations can be formulated, then those words which areclassi�ed with low con�dence can be rejected. With a good measure of con-�dence, many more incorrect words than correct words would be rejected,so the proportion of accepted words which are correct would be higher thanthe raw recognition rate. For a text transcription system, rejected words canbe highlighted in the transcription and the user prompted for correct classi-�cation, reducing the e�ort needed to proof-read and correct the transcribedtext. Similarly, in a post-o�ce sorting situation, if those envelopes whoseaddresses are classi�ed with low con�dence are rejected andmanually sorted,the number of machine sorted mail pieces incorrectly routed will be reduced.Projects designed to tackle commercial problems have speci�ed accuracy andrejection goals that the classi�ers must meet. Because recognition must begood to make automation cost-e�ective, the accuracy �gure is usually veryhigh, but, acknowledging the di�culty of handwriting recognition, the per-mitted rejection rates are high (section 2.2.1).Three rejection measures have been evaluated for this system, based onthe word likelihoods and posterior word probabilities for the most likelyO�-line handwriting recognition 104



CHAPTER 8. HIDDEN MARKOV MODELLINGword, Wbest, and the second most likely word, Wsecond. In the decoder, thelikelihoods L(Wbestjx�0), L(Wsecondjx�0)and probabilities P (Wbestjx�0), P (Wsecondjx�0)are already calculated, and it can be seen that if the graphic data matches aword model very well, then P (Wbestjx�0) will be close to one and L(Wbestjx�0),P (Wbestjx�0 )P (Wsecondjx�0) and L(Wbestjx�0)L(Wsecondjx�0 ) will all be high.L(Wbestjx�0) is the product of a variable number of probabilities (dependingon the number of frames (�+1) in the word). To obtain a threshold applicableto words of any length, the log likelihood is scaled to be independentof thesefactors and the variable thresholded is the normalized likelihood L̂(Wbestjx�0):log L̂(Wbestjx�0) = logL(Wbestjx�0)� + 1 : (8.39)Alternative scaling factors have been tested, incorporating the weights � and�, but this simple normalization was found to be most e�ective.
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CHAPTER 8. HIDDEN MARKOV MODELLING8.6 Out-of-vocabulary word recognitionWords and wordlessness. Between the two....Tony Harrison. Wordlists.If the vocabulary is not inherently limited by the task (in which case an outof vocabulary word is an error), the system should be able to detect that theword is poorly recognized and, if possible, should then use an alternativestrategy to recognize the word.a b dczFigure 8.19: A non-word Markov model showing some of the26 letter models.One such strategy is to create a non-word Markov model, as shown in�gure 8.19. Each circle represents a letter model, with one or more states.The initial distribution � is uniformacross the �rst states of each lettermodel.The probabilities are combined to �nd the �0 probabilities as before, but aftereach letter is complete, a transition to any of the letters is permitted. As thedata are accumulated, a path is traced between successive letters.When the �nal frame is processed, the most likely path is found and theletters corresponding to its state sequence can be printed out. Viterbi de-coding is used, since �nding the best sequence of letters when calculating fullprobabilities is much more di�cult than in the �xed-vocabulary task. Just aswith a word bigram, a letter bigram can be created detailing the probability ofmaking a transition from one letter to another, and these probabilities can bemultiplied into the state sequence probability. Table 8.11 shows the recogni-tion rates for the non-word model when it is used instead of a lexicon. Theseresults compare favourably with the single-author non-word error rates of78{92% of Edelman et al. (1990).Decoding with the non-word model is faster than when using a lexicon.(0.76s compared to 2.21s when using a 1334 word lexicon, both with the 160-unit network.) The non-word model could be used as a fast alternative to thelexicon-based decoder. It is possible to �nd the most likely letter sequenceby this method, and then, if a lexicon is available, the best in-lexicon matchO�-line handwriting recognition 106



CHAPTER 8. HIDDEN MARKOV MODELLINGBigram weight Error rate (%)0 60.31 53.92 54.23 55.1Table 8.11: Error rates for the non-word model with di�erentweightings (with the durationmodel weight � = 3), using Viterbidecoding.
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Figure 8.20: Words plotted withnon-word normalized likelihoodagainst lexicon normalized likeli-hood. Figure 8.21: A graph of recog-nition rate against lexicon size,with and without modelling out-of-vocabulary words. The coverage ofthe lexica is also shown.is determined by �nding the word with the minimum edit distance from thissequence.1 Several of the closest words could be identi�ed and used as thevocabulary for a slower, more accurate recognition.A system has been created which uses both the lexicon and the non-wordmodel, �nding the most likely word in the lexicon and the most likely letterstring respectively. The problem then is to decide which of these hypothesesto choose. It has already been seen that the normalized likelihood is a goodcon�dence measure for the classi�cation of the lexicon-based system. A sim-ilar measure can be de�ned for the non-word model, based on the likelihoodof the most likely state sequence, L(nonwordjx�0).log L̂(nonwordjx�0) = log �P (Wbest)�L(nonwordjx�0)�� + 1 (8.40)1The edit distance is calculated by comparing the letter string with each lexicon word, andpenalties are accumulated for deletion, insertion and substitution of letters. This compari-son is faster than calculation of the � probabilities for each word.O�-line handwriting recognition 107



CHAPTER 8. HIDDEN MARKOV MODELLINGNote that, to correct for the e�ect of the unigram grammar on L̂(Wbestjx�0), thesame prior, P (Wbest)must be included in the non-word normalization to makethe �gures comparable. Now, plotting log L̂(nonwordjx�0) against log L̂(Wbestjx�0)for each word (�gure 8.21) shows that there is a clear boundary separatingthe out-of-vocabulary words which the non-word model correctly identi�esfrom the in-vocabulary words which the lexical approach gets right but thenon-word model gets wrong. These are the two sets of words for which thedecision betweenmethods is critical. Words for which bothmethods are rightor both are wrong can be ignored here as the choice between strategies doesnot a�ect the accuracy of these classi�cations.Since the two groups of words hardly overlap, a threshold Pnw, can bechosen to give a decision boundary on the line:log L̂(nonwordjx�0) = logPnw + log L̂(Wbestjx�0): (8.41)Figure 8.20 shows one such boundary � logb Pnw = 2600. This threshold canbe interpreted as the log of the probability of transition into the non-wordmodel within a global model which encompasses the non-word model andall the lexicon word models. In fact Pnw = 0:33. The base b of the logarithmwas chosen to permit numerically accurate calculations with the probabilitiesstored as integers, if desired, so in fact b is little more than one.Figure 8.21 shows the error rates when using this decision boundary. Theerror rates are compared to the coverage and the error rate using only thelexicon, as in �gure 8.15. This time the recognition rate is higher than thecoverage for small lexica, showing the power of the non-word model for rec-ognizing out-of-vocabulary words. With larger lexica, the recognition ratefalls below the coverage, but remains above the lexicon-only recognition rate.Thus a non-word model always improves the recognition rate, though the ef-fect is small when the lexicon is large.8.7 SummaryThis chapter has described the �nal stage in the process of recognizing hand-written words: deriving word probabilities from the frame likelihoods of theprevious chapter. From the simple models with one state per letter, a num-ber of enhancements have been described. By modelling the duration dis-tributions of letters, the system accuracy has been improved. The problemof vocabulary size has been addressed and its e�ect on the error rate shown,for both closed and open vocabulary tasks. A simple unigram grammar hasbeen implemented, and it has been shown how this reduces the error rate. Ascheme for rejecting poorly recognized words has been described and a sys-tem for recognizing words not in the lexicon implemented. Combining thesehas given increased recognition on the open vocabulary task when many testwords are not in the lexicon.O�-line handwriting recognition 108



CHAPTER 8. HIDDEN MARKOV MODELLINGThe most signi�cant results from this chapter are the �nal error rates of8.8% with a lexicon and grammar, 53.9% using no lexicon and 12% on the openvocabulary task. Lower error rates can be achieved by applying a rejectioncriterion.
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Chapter 9ConclusionsI saw in�nite processes that formed one single felicity and,understanding all, I was able to understand the script of the tiger.Jorge Luis Borges. The God's Script.This thesis has described a complete handwriting recognition system whichhas been implemented and tested on a database of cursive script. The resultsshow that themethod of recurrent error propagation networks can be appliedsuccessfully to the task of o�-line cursive script recognition and perform bet-ter than a comparison hiddenMarkov model system. An 88% recognition ratehas been achieved on an open-vocabulary task. Comparison of results withother researchers is di�cult because of di�erences in experimental details,the actual handwriting used and the method of data collection. The resultswhich have been published for similar problems are noted in section 2.3.2.The single author recognition rates for other systems are (for various lexiconsizes): 48% by Bo�zinovi�c and Srihari (1989), 50% by Edelman et al. (1990) and70% by Yanikoglu and Sandon (1993).The recognition performance of the system has been improved in a num-ber of ways. The successive improvements are summarized in table 9.1. Thisshows the relative reduction in error rate that each of the techniques hasbrought about.Enhancements in normalization and in the detection and representationof features have led to reduced error rates. The hybrid system, which wasfound to perform better than the discrete probability HMM system, was im-proved by retraining with re-estimated frame labels. Baum-Welch retrainingof the recurrent network has been described here and has also brought aboutan improvement in recognition rates compared to using Viterbi targets. Bet-ter performance still can be hoped for from training larger networks, but thetraining time is problematic for such large networks without specialist hard-ware.Language modelling has been found to improve the recognition perfor-mance, both by incorporating a model of the duration of each letter, and byadding a unigram word grammar. It has been shown that the system canrecognize 46% of words without restriction to a lexicon, and that a modelO�-line handwriting recognition 110



CHAPTER 9. CONCLUSIONSMethod Proportional errorrate reduction (%)Skeleton vs. undersampling 36Features 11Non-uniform quantization 15Snakes 14Hybrid vs. discrete HMM 30Baum-Welch vs. Viterbi targets 9Retraining 9Duration model 14Unigram grammar 7Table 9.1: The proportional reduction in error rate achieved bythe incorporation of the techniques described in previous chap-ters. The discrete HMM is compared to a hybrid with the samenumber of parameters.for words not in the system's vocabulary can increase the recognition ratebeyond that otherwise obtained.The training time of the recurrent network has been investigated and hasbeen reduced by choosing an e�ective weight update scheme, by using soft-max outputs, by specifying the training schedule and by initialization of theweight matrix. Preliminary work to investigate the operation of the networkhas been carried out, giving a greater understanding of the weights and feed-back units. Much more could be done in this area with the hope of greaterunderstanding and improved performance.9.1 Further workIn writing a complete handwriting recognition system, one must face theproblem of where e�ort can be most e�ectively applied to increase the per-formance. It is felt that in this system, the e�ort has been evenly distributed,but with a slight emphasis on thework described in chapter 8. In distributingthe e�ort, potential improvements in every aspect of the system have neces-sarily been left without being investigated. As a result, further work couldbe carried out, with reasonable hope of return, on any of the techniques thathave been described.The preprocessing used could be improved upon, for example by extractinga better skeleton from the raw image. Doermann (1993) tackles this partic-ular problem with a model-based approach, and derives a representation ofthe o�-line strokes with inferred temporal information. His technique hasnot yet been applied to a recognition task. Normalization of a skeleton inthe form derived by Doermann could be carried out using the procedures ofSinger and Tishby (1994) which use a model of handwriting production toO�-line handwriting recognition 111



CHAPTER 9. CONCLUSIONSguide normalization. The non-uniform quantization scheme could also bemade more stable, and the snake feature models could be extended as de-scribed at the end of chapter 6.This system has been tested on the problem of single-writer handwrit-ing recognition, though the design has been made open to accepting anystyle of handwriting, with normalization against scale, slope, slant and strokewidth. It is hoped that future work will include the incorporation of algo-rithms which will allow the system to be tested on the CEDAR database.The pure HMM system could be improved by experimenting with otherquantization schemes using alternative metrics or dividing the input spaceinto several spaces to be individually quantized. The HMM could also begiven a probability distribution for each state, instead of tying the distribu-tions across all states representing the same letter. This would be simplefor the pure HMM, but might be computationally intensive for the hybridsystem. Context-dependent models might also be used.Better recognition rates for the hybrid system could be expected from thetechnique of connectionist model merging (Robinson et al. 1994). The im-position of a more complex, task-dependent grammar which further restrictsthe choice of words can also be expected to yield higher accuracy.
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