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Summary

Computer handwriting recognition offers a new way of improving the human-
computer interface and of enabling computers to read and process the many
handwritten documents that must currently be processed manually. This
thesis describes the design of a system that can transcribe handwritten doc-
uments.

First, a review of the aims and applications of computer handwriting recog-
nition is presented, followed by a description of relevant psychological re-
search. Previous researchers’ approaches to the problems of off-line hand-
writing recognition are then described. A complete system for automatic,
off-line recognition of handwriting is then detailed, which takes word images
scanned from a handwritten page and produces word-level output. Methods
for the normalization and representation of handwritten words are described,
including a novel technique for detecting stroke-like features. Three prob-
ability estimation techniques are described, and their application to hand-
writing recognition investigated. The method of combining the probability
estimates to choose the most likely word is described, and performance im-
provements are made by modelling the lengths of letters and the frequency
of words in the corpus. The system is tested on a database of transcripts from
a corpus of modern English and recognition results are shown. Recognition
is described both with the search constrained to a fixed vocabulary and with
an unlimited vocabulary.

The final chapter summarizes the system and highlights the advances made
before assessing where future work is most likely to bring about improve-
ments.

Key words

Off-line cursive script, handwriting recognition, OCR, recurrent neural net-
works, forward-backward algorithm, hidden Markov models, duration mod-
elling.
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Chapter 1
Introduction

By this art you may contemplate the vartation of the 23 letters.
Robert Burton. The Anatomy of Melancholy.

The world is filling with computers. Whether we like it or not, they are
becoming ubiquitous. As ever more people are forced into contact with com-
puters and our dependence upon them continues to increase, it is essential
that they become easier to use. As more of the world’s information process-
ing is done electronically, it becomes more important to make the transfer
of information between people and machines simple and reliable.

One of the aspirations of the field of artificial intelligence, if one ignores
for the time being the longer-term goals of analysing and emulating human
intelligence, is simply to enable computers to accomplish tasks which are nat-
ural to people. Thus computers should be better able to interact with people
and to act in human society in a less constrained manner than has previously
been possible. These aims are reflected in the more modest attempt by the
computer industry to make computers increasingly ‘user friendly’. In this
vein, computers have come out of laboratories and into homes and offices;
we communicate with them using mice and keyboards rather than punched
cards and toggle switches. Handwriting is a natural means of communication
which nearly everyone learns at an early age.! Thus it would provide an easy
way of interacting with a computer, requiring no special training to use effec-
tively. A computer able to read handwriting would be able to process a host
of data which at the moment is not accessible to computer manipulation.

After this argument, it seems surprising how little research there has been
into the computer recognition of handwriting. One reason advanced is that
the optimism about the capabilities of imminent speech recognition machines
made people feel that other approaches were unnecessary. While some of
the promises of speech recognition by machine have already been fulfilled,
and researchers are still optimistic, some of the benefits have been slow to
materialize and people have thought again about what is required of human-
computer interfaces. Though speech is a very convenient form of commu-

!Downing and Leong (1982:p.299) quote an estimated world literacy rate of 71%. In those
people coming into contact with computers, the figure must be higher.
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CHAPTER 1. INTRODUCTION

nication, it is not always the most practical. In noisy environments, those
where silence is important, or where a large number of people must work
with computers, it is clear that voice input is not the best solution. Though
computer professionals and secretaries would be loth to give up the conve-
nience and speed of a keyboard, for those not familiar with keyboards, and
for portable or occasional use, handwriting entry is clearly of practical value.
This has lead to the growth in the last year or two of ‘pen computing’ — the
use of computers which allow input from an electronic stylus (Geake 1992).

In addition to a potential mode of direct communication with computers,
handwriting recognition is essential to automate the processing of a myriad
of handwritten documents already in circulation. From cheques and letters
to tax returns and market research surveys, handwriting recognition has a
huge potential to improve efficiency and to obviate tedious transcription. As
the Economist recently suggested, “Today’s biggest prize in computer vision,
however is text and handwriting....” (Browning 1992).

1.1 This thesis

This thesis investigates the use of handwriting recognition as a medium of
communication between people and computers. After presenting a general
overview of handwriting recognition, it focuses on the problem of reading
handwritten documents. Later chapters present research carried out to de-
velop a computer system which tackles this problem. The system has been
described in earlier papers (Senior and Fallside 1993a; Senior 1993).

The thesis is divided into 9 chapters. This chapter describes the aim and
contents of the thesis. The next chapter summarizes the aims and achieve-
ments of other work in the field of handwriting recognition and establishes
a taxonomy of the field into which the original work of this thesis can be fit-
ted. Applications for handwriting recognition are also examined. Chapter 3
studies work in the psychology of reading, to discover knowledge which can
be put to use in the design of a machine handwriting recognition system.

Chapter 4 presents an overview of the handwriting recognition system
that has been designed, and the following chapters describe the workings
of individual parts of that system, including normalization and representa-
tion (Senior 1994); feature-finding (Senior and Fallside 1993b); probability
estimation and language modelling. Each of these chapters includes details
of experiments carried out to assess the performance of the techniques pre-
sented and a discussion of their validity.

The final chapter draws together the conclusions of the chapters about
the handwriting system and summarizes what has been achieved in this pro-
gramme of research. Further work which could be carried on from this thesis
is also suggested.

Off-line handwriting recognition 7



CHAPTER 1. INTRODUCTION

1.2 Original contribution

This thesis describes a new, complete off-line handwriting recognition sys-
tem. The major original contributions described in this thesis are as follows:

e The system applies a novel approach, using recurrent neural networks
for probability estimation. While the recurrent neural network has pre-
viously been used for speech recognition, it has not before been applied
to the recognition of handwriting.

e The training of a recurrent neural network with the forward-backward
algorithm is described here for the first time.

e The psychology of reading literature is reviewed, showing how the study
of human reading and writing gives an indication of the characteristics
which might prove useful in a reading machine.

e The methods used here to normalize handwritten words are an origi-
nal synthesis of new and established techniques. Previously published
methods are compared and improved upon.

e Words are encoded in an original manner which is shown to be bet-
ter than the common bit-map representation, and a novel method of
feature detection, based upon the use of snakes is described.

e Chapter 8 investigates the use of duration modelling for off-line hand-
writing recognition and investigates the problems of out-of-vocabulary
words with lexica of limited size.

1.3 Notation

Throughout this thesis, the distinction is made between a handwritten word,
and the idea of that word. To make this distinction, the following typo-
graphical convention is employed. To represent a handwritten word or let-
ter, the following font is used: aﬁodwfyhﬂmwwmwyxz and to de-
note the letters or words as concepts (McGraw et al. 1994), this font is used:
‘abcdefghijklmnopgrstuvwxyz’. The purpose of the system described here is
to transcribe ‘words’ into ‘words’. When the internal representation of the
system is referred to (section 5.2), a single frame of data is shown thus: x;;
and the data representing a whole word are shown as x. The set of let-
ters as concepts is denoted A and an arbitrary individual letter is shown A;.
The discrete probabilities used throughout are denoted P. These include the
probability of one or several frames of data given that frame ¢ is part of letter
A; — P(x|A;) or P(x}|A;) respectively; the probability that frame ¢ represents
letter A; given the data of the frame — P(A,|x;); and the probability of the jth
element of a frame x,, given that that frame represents letter A; — P((x;);|A:).
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Chapter 2

Handwriting recognition

... a vast population able to read but unable to distinguish what is
worth reading.

G. M. Trevelyan. English Social History.

As computer power has increased over the years, and their range of applica-
bility has similarly increased, one of the major goals of research into com-
puters has been to make computers easier to communicate with and thus to
make their benefits available to a much greater number of people. One of
the major obstacles to the integration of computers as universal information
processing systems is the fact that most useful business data is still stored
on paper. Particularly when dealing with the general public, a huge amount
of office paperwork is handwritten. Letters and faxes, as well as forms or
annotations to printed documents, may be handwritten; in many situations
it would be highly desirable to process the contents of these documents by
machine, for which handwriting recognition is essential.

Similarly, computer user interfaces need to be improved to enable com-
munication between computers and a wider class of users in a greater variety
of circumstances. While ideas such as the mouse and touch-sensitive screens
have been developed, and much work has been carried out into computer
speech recognition, there is still much scope for making the interface more
natural for users who are not familiar with computers. Handwriting ranks
very highly as a way of communicating linguistic information in a way which
is natural to very many people. Though speech recognition has been claimed
as the panacea for user-interface problems, it has been slow to achieve its
promise, particularly in noisy environments, and the limitations of speech
recognition have become clearer as research has advanced.

In the last few years the field of handwriting recognition has become much
more popular. Not only are more researchers trying to tackle the problems
that it presents, but solutions to these problems are slowly becoming avail-
able and are actually being sold as useful products. Of late, pen computers
have become available with handwriting recognition software for isolated
characters and more recently for cursive script. Handwriting recognition sys-
tems have already started to be used for reading zip codes on envelopes and

Off-line handwriting recognition 9



CHAPTER 2. HANDWRITING RECOGNITION

amounts on cheques.

Before describing a new handwriting recognition system in later chapters,
it is worth presenting here the field of automatic handwriting recognition in
its entirety. After describing a taxonomy of the field, applications envisaged
for handwriting recognition systems are discussed and work by other authors
is presented to demonstrate the approaches taken.

2.1 Ataxonomy of handwriting recognition problems

Having established the need for automatic handwriting recognition in gen-
eral, it is useful to examine the field more closely and to identify several
areas with different applications and requiring different approaches. Though
many techniques can be shared, the literature tends to divide into groups of
researchers, each concentrating on a special area of handwriting recognition.

2.1.1 On-line versus off-line

The major division is between on-line and off-line systems. While other
methods could be distinguished, handwriting recognition systems are gener-
ally polarized between those receiving their data directly from some sort of
pen device attached to the computer, and those which recognize handwrit-
ing already present on a piece of paper — a handwriting equivalent of Optical
Character Recognition (OCR) which is already widely used for reading printed
matter. In the literature dynamic is sometimes used to mean on-line and
static off-line. So far, the majority of systems have tackled the easier, on-
line, problem where the time ordering of strokes is available as well as pen
up/down information; overlapping strokes can easily be distinguished and
stroke positions are accurately known. On the other hand, off-line systems
have to cope with the vagaries of different pen types, wide strokes which
overlap and a lack of ordering information. The growth of pen computing
has seen much investment in on-line systems, and the difficulty of off-line
recognition has deterred research until recently.

Since the on-line data from an electronic stylus are a one-dimensional
stream of information, techniques from speech recognition have been suc-
cessfully applied to this problem, including Hidden Markov Models (Belle-
garda et al. 1994) and time-delay neural networks (Schenkel et al. 1994). The
data from the tablet are usually (=, y) coordinates sampled at a constant fre-
quency in time, though they are often re-parametrized to be equally-spaced,
and represented in terms of arc-length, curvature, and angle, with informa-
tion about whether the pen is touching the tablet. A particular problem of
on-line recognition is how to handle delayed strokes — strokes which are
written after the rest of the word, as in dotting ‘i’s and crossing ‘t’s. Some
authors choose to manage without this extra data; Schenkel et al. record
its existence as a ‘hat’ feature associated with the strokes over which the

Off-line handwriting recognition 10



CHAPTER 2. HANDWRITING RECOGNITION

HANDWRITING
ON-LINE |OFF-LINE

SIGNATURE
RECOGNITION IDENTIFICATION VERIFICATION

Figure 2.1: Subdivisions of machine handwriting recognition (af-
ter Plamondon and Lorette (1989)).

delayed strokes occur, and Bengio et al. (1994a) represent the surrounding
visual context of all strokes so that the dot is seen above the cusp of the «’

Although applications and techniques vary considerably, the general tax-
onomy of both off- and on-line handwriting analysis is similar; as is shown
in figure 2.1 and described in the following section. While this thesis is con-
cerned with off-line handwriting recognition, parallel work from on-line re-
search is brought in throughout when there is a community of interests, such
as in the modelling of handwriting production or in the application of prob-
abilistic recognizers and grammatical constraints.

2.1.2 Author identification versus content determination

A second dichotomy in the field, orthogonal to the on-line/off-line division
is according to the information to be extracted from the handwriting. From
both on-line and off-line data, it may be necessary to determine the author-
ship of the writing, the content of what has been written, or both. In both
cases, the effects of some variations should be ignored. To determine the au-
thorship, differences in personal style should be highlighted, to capture what
is characteristic about one person’s writing (their idioscript). Conversely, to
determine the content of the writing, the variations due to idioscript should
be eliminated and ignored. These two requirements result in very different
approaches. Techniques also differ depending on whether the author is to be
recognized from a signature or from a piece of text.

If the author of a piece of text or signature must be determined, the dis-
tinction is made between verifying that the author is the claimed author (for
instance in security or banking applications) or merely deciding between a
pool of known authors, for instance in a writer-adaptive handwriting recog-
nition system which uses different parameters for word recognition according
to the author. The former is the more useful, but of course the harder, prob-

Off-line handwriting recognition 11



CHAPTER 2. HANDWRITING RECOGNITION

lem. Plamondon and Lorette (1989) give an overview of handwriting systems,
and a thorough review of signature verification systems.

2.1.3 Writer independence

The whole field of handwriting recognition is similar to the already well-
developed subject of automatic speech recognition, which is often classified
along the lines of speaker dependence, vocabulary size and isolated word vs.
continuous speech. Analogues to each of these exist in handwriting recogni-
tion, and are discussed in this and the following sections.

Handwriting styles are extremely diverse, depending both on the pattern
used to teach handwriting to an individual and on the individual’s idioscript
(corresponding to spoken accents and idiolects). Because of this, it is more
difficult to devise a system to recognize many peoples’ handwriting than one
which need only recognize the writing of a single author. Instead of creating
a system which can recognize anybody’s handwriting, the problem of multi-
ple writers could be tackled by a system which is able to adapt to the current
writer. Adaptation to the writer’s style could be used when recognizing a
lot of material by the same author, but would be of no use when identi-
fying the city names on envelopes. Alternatively, many similar subsystems
could be created, each recognizing one style of handwriting (or one individ-
ual’s handwriting). Then a global system would select the subsystem which
corresponded to a particular handwriting sample.

2.1.4 Vocabulary size

The task of recognizing words from a small lexicon is much easier than from
a large lexicon (where words are more likely to be similar to each other).
Thus, animportant criterion in assessing system performance is the size of the
lexicon used. The lexicon will depend on the application of the recognition
system. For a general text transcription system, a lexicon of 60,000 words
(the number of references in a medium-sized dictionary), would cover about
98% of occurrences, and for specific domains, such as reading cheque values in
words, or postal towns from envelopes, the vocabulary can be much smaller.
Alternatively, it may be necessary for the system to recognize non-words if
the user is likely to write words not in the lexicon, such as abbreviations,
foreign words or names. This issue is discussed again in section 8.4.

2.1.5 Isolated characters

Segmentation of continuous speech into its component words has been found
to be very difficult since in natural speech words run together with no silence
between. For simpler tasks the recognition is made easier by forcing the
speaker to pause between words. Similarly, in cursive script it is hard to dis-
tinguish the boundaries between letters — the difference between ‘..’ and

Off-line handwriting recognition 12



CHAPTER 2. HANDWRITING RECOGNITION

‘40’ or between v’ and W’ is very slight. The task can be simplified by forcing
the writer to separate letters (discrete handwriting), to write in capitals or for
the greatest clarity, to write clearly separated capitals in pre-printed boxes.
When high reliability is required, the latter constraints may be unavoidable
since they are already necessary to enable human readers to decipher re-
sponses on forms. A number of authors have investigated the problem of
recognizing isolated characters (section 2.3.1), particularly for the problem
of reading postal codes. Other authors have researched the recognition of
discrete handwriting (‘hand print” where lower-case letters are written but
must be separate) or pure cursive script.

Similar constraints can be placed on cursive script, forcing the author to
write each word in a separate box, or on a guide line. These constraints are
mainly to encourage clarity since the word segmentation problem proves less
difficult than segmentation into characters, and less strict constraints could
still ensure high accuracy segmentation of a page into its component words.
Other authors have described methods of segmenting pages into words and
distinguishing between gaps in words and gaps between words (Srihari et al.
1993).

2.1.6 Optical character recognition

Off-line handwriting recognition has much in common with optical character
recognition (OCR) — the reading of print by computer. This application re-
ceived much attention during the 1980s and successful solutions have been
found, with commercial packages available for microcomputers which can
read type in a variety of fonts and in a certain amount of noise. The history
and current status of OCR are reviewed by Mori et al. (1992) and Pavlidis
(1993). In more difficult situations, these commercial packages are still not
satisfactory. Authors describe problems working with unusual character sets
and fonts, poor quality documents or documents in special formats (Bos and
van der Moer 1993; McVeigh 1993). Indeed, it is not clear that OCR is eco-
nomically viable in a great many cases when high accuracy is essential (Olsen
1993).

The reason why the success of OCR has not carried over into handwriting
recognition is the great variability in handwriting. For type in a fixed font,
all letters ‘a’ are produced from a single archetype, and thus are very similar
on the page, only being corrupted by a relatively small amount of noise in
forms such as blurring, merging and slight positional variations. The process
of handwriting is much more variable in all of these processes and suffers
from variations due to other effects such as co-articulation — the influence
of one letter on another. Also, with type, the symbols are usually distinct
(except certain ligatures, as ‘fi’, which can be learnt as a separate symbol) so
the problem of segmentation is not present.

As a consequence of this the relatively simple techniques used in OCR,
such as template matching, are inadequate when presented with the greater

Off-line handwriting recognition 13



CHAPTER 2. HANDWRITING RECOGNITION

variability in handwriting so relatively little research in the OCR literature
carries over to handwriting recognition.

2.2 Applications

This section reviews some of the more important applications that may be
envisaged for off-line handwriting recognition. On-line recognition tends to
be for data-entry to obviate a keyboard as in pen computers, but can also be
used for special purposes such as using dynamic signatures to verify identity.

One potential application in the long term is in using off-line techniques
for on-line handwriting recognition. Currently, off-line performance lags be-
hind that of on-line recognition systems, but over the next few years, as the
technology improves it is likely that methods for both types of handwrit-
ing recognition will converge, leading to more general systems and reduced
development costs. This convergence can be seen in the model-based ap-
proaches now being used (Pettier and Camillerapp 1993; Doermann 1993),
which interpret off-line handwriting as a path of ink laid down over time,
rather than as an image to be analysed independently of its method of pro-
duction. The data that can be derived by such algorithms is very similar to
the data available to an on-line recognizer.

In the longer term though, it would seem that the convergence is likely to
treat both off-line and on-line words as a two-dimensional image, and not as
a one-dimensional stream of trajectory data. The reason for this can be seen
by looking at the psychology of reading (chapter 3) — the way people read
is by looking at an image, not by analysing the pen path used to produce
the writing. Since this involves ignoring the time information, at first this
seems to be a poor method of analysing on-line data. However, the informa-
tion in handwriting is not transmitted in the timing of the pen trajectory. It
does not matter whether the strokes of a word are written quickly or slowly,
with changing speed, or even in random order, since it is the appearance of
the finished word that matters. Thus, by discarding the time sequence, a
source of mis-information is actually avoided. For instance, in current on-
line systems, an %’ written clockwise must be recognized differently from an
‘o’ written anticlockwise, for in the time sequence information, they appear
different. Someone who writes ‘%’ may subsequently return to extend the
final @' stroke to make the word read ‘%', but this change would be lost on
a machine relying on the time-ordering of strokes. An off-line approach ig-
nores these factors and simply looks at the final position of the strokes, just
as a human reader would. This approach also gives a satisfactory solution
to the problem of delayed strokes (section 2.1.1). After these arguments, it
may be seen that, while on-line recognition is better than off-line now, be-
cause the timing information generally is consistent, a good off-line approach
might ultimately cope with a wider variety of variation. Conversely, the tim-
ing information is very useful when creating an author verification system —
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CHAPTER 2. HANDWRITING RECOGNITION

on-line signatures are much harder to forge than off-line signatures, since the
dynamics of strokes (with pen both up and down) are harder to forge than
the finished appearance.

2.2.1 Cheques

One important commercial application for off-line cursive script is in the ma-
chine reading of bank cheques. While the amount in figures is easier to read,
it should be checked that the amount in words is the same, and this can be
used for confirmation where the numerical amount is unclear. Such a system
would only need to have a small vocabulary (about thirty-five words). Given
a system that achieved high accuracy without a lexicon, one could check that
the payee corresponded to the account to be credited. Such a system might
also include signature verification, bringing about an increase in security with
the reduction in drudgery and time. Given the number of cheques passing
through the banking system each day, a cheque reading system, even if only
able to confidently verify half of the cheques, would save much labour on
a tedious and unpleasant job. Cheques which could not be confidently ver-
ified by machine would still be processed manually, so accuracy would be
maintained. The project supported by the French post office has the goal
of achieving a 1 in 100,000 error rate from the combined recognition of lit-
eral and numerical amounts, but permitting 50% of cheques to be rejected for
manual sorting (Leroux et al. 1991).

2.2.2 From postcodes to addresses

Off-line systems capable of recognizing isolated handwritten digits have al-
ready been created and installed in many post offices around the world, as
part of automatic mail-sorting machines. Given a system to locate the post-
code on an envelope (Wang and Srihari 1988; Martins and Allinson 1991;
Palumbo et al. 1992) this can be read and used to direct mail automatically.
Clearly certain countries such as the USA are at an advantage in having digit-
only zip-codes and many researchers have already tackled this problem with
reasonable success (section 2.3.1).

To process more mail automatically, systems must begin to use the infor-
mation contained in the rest of the address. This allows the uncertainty in
the postal code classification to be removed by comparing candidate zip codes
with candidate addresses in a database of all address/zip code combinations,
giving more high confidence classifications. Furthermore, for countries with
limited resolution in the postcode, the address can be used to increase the
resolution of sorting. U.S. postal service projects aim to use the address to
determine an 11 digit delivery point code which specifies a single house even
when only the five digit zip code was provided.

Mail sorting can be seen as an ideal application for writer-independent
handwriting recognition, since it has a wide variety of levels of difficulty, from
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isolated digits written at predetermined locations on an envelope, up to com-
plete determination of an address without a postcode. Address recognition
also admits of a certain amount of error while allowing a large rejection rate.
Since there will always be some addresses that are illegible or incomprehen-
sible to a machine, a ‘don’t know’ answer can be given and the item sent to
a bin for human sorting. Further, some mail is already misrouted, so the
postal service is considered fallible and the consequent delays are already
tolerated.

2.2.3 Form processing

Another major application which is now receiving attention is the automatic
processing of forms. Forms are widely used to collect data from the general
public. For anything more than the most simple information, for which check
boxes can be used, replies are handwritten in spaces provided. Much of this
information must be stored in databases and can be processed automatically
once entered into the computer. Data entry is currently the bottle-neckin the
process. Several authors have written systems to segment the handwritten
data from the pre-printed form and then to transcribe the handwritten data.
In some applications, this may be isolated capital letters written in boxes,
but work is now moving on to hand print (Breuel 1994; Garris et al. 1994).
Although forms must usually be hand printed to keep the writing as legible as
possible, for human as well as machine processing, cursive recognition would
still be useful for processing those forms that have mistakenly been filled out
in cursive script.

2.2.4 Other applications

A variety of other office document processing systems using off-line hand-
writing recognition can easily be envisaged. Already many companies use
electronic document processing systems which manipulate the scanned im-
ages of documents rather than the documents themselves. This is clearly a
very data-intensive task, but one way of reducing the data storage is to ex-
tract the information and store text in ASCII (or perhaps in a richer format
recording the style of writing). Documents would then be easily searchable
and index construction would be made possible. Further possibilities exist in
reading handwritten documents for the blind or in automatic reading of faxes.
Faxed orders could be processed and dispatched automatically and standard
enquiries replied to without human intervention. Other faxes could be fed
directly into an electronic mail system, providing at the very least automatic
notification of fax arrival by reading the cover sheet, if not the full text of the
document.

Of course, the advantages of handwriting recognition are not restricted
to English or to the Roman alphabet, though these have probably attracted
most research. In the literature there is a wide range of papers describing
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handwriting recognition in a multitude of languages. The basic problems
of handwriting recognition are common to all languages, but the diversity
of scripts means that very different approaches may be used. For example,
Japanese Kanji (Mori and Yokosawa 1988) and Chinese (Lu et al. 1991) char-
acters are strongly stroke-based, and characters are easy to segment from
one another, but characters are very complex and there are many classes
to distinguish. Arabic and roman alphabets can be cursive, and Arabic and
some Hebrew require accurate recognition of diacritic marks. Govindan and
Shivaprasad (1990) cite many more languages.

2.3 Existing off-line handwriting recognition systems

This section reviews some of the off-line handwriting systems which have
been detailed in print. To do this it is convenient to classify them, as de-
scribed above, into isolated character and cursive script systems. Here only
a brief overview of these systems is given. Specific details are provided in
later chapters when particular issues are discussed.

2.3.1 Isolated characters or digits

Suen et al. (1980) provide a good review of handwriting recognition up to
1980, concentrating on isolated character recognition — which had been the
focus of research until then. They describe a variety of feature based ap-
proaches and divide these into global features (templates or transformations
such as Fourier, Walsh or Hadamard); point distributions (zoning, moments,
n-tuples, characteristic loci and crossings and distances) and geometrical or
topological features. The latter were, and have remained, the most popu-
lar techniques, and involve separate detectors for each of several types of
features such as loops, curves, straight sections, endpoints, angles and inter-
sections. For instance, Impedovo et al. (1990) use cross-points, end-points
and bend-points as their features, coding these as to their location in three
horizontal and three vertical zones within each character. The encoded char-
acters are then identified using a decision tree classifier. Elliman and Banks
(1991) also use features (end-point, junction, curve and loop) each of which
is associated with a numerical quantity, such as curvature or length, before
being decoded in a neural network (a feed-forward neural network or an
adaptive feedback classifier).

Nellis and Stonham (1991) and Hepp (1991) both use sets of global mor-
phological features created by separately examining the left, right, top and
bottom edges of each character. The profile of the character from each edge
is coded as a separate feature for classification by a neural network.

Le Cun et al. (1989) and Fukushima (1980) take the approach of feeding
a normalized bitmap image of the character to be recognized into their net-
works (multi-layered perceptron and neocognitron respectively). Both these
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networks are constructed from layers of identical feature detectors, which
become more specialized and less location specific deeper in the network,
until the outputs of the final layer correspond to characters, independent of
location in the image.

A host of other authors have tackled the problem of recognizing isolated
digits or characters in the last few years (Hepp 1991; Idan and Chevalier 1991;
Impedovo et al. 1990; Lanitis et al. 1993), particularly since the increas-
ing availability of data has made this a standard test problem for testing
pattern recognition methods (Simard et al. 1993; Hinton et al. 1992; Boser
1994). Isolated digit classifiers have now become so good that research is
concentrating on reading whole zip codes where the digits are often touching
(Fontaine and Shastri 1992; Kimura and Shridhar 1991; Matan et al. 1992),
and finding optimal combinations of multiple classifiers now seems a more
promising way of reducing error rates than finding better classifiers. Huang
and Suen (1993) cite several papers taking this approach. Performance is now
being limited by the number of digits which are entirely ambiguous and could
not be confidently classified by human readers.

2.3.2 Off-line cursive script

The problem of off-line cursive script recognition has received little atten-
tion until recently, partly because of the difficulty of the problem, but also
because of the lack of data. Simon (1992) and Suen et al. (1993) give brief
reviews of script recognizers, but the best review is probably by Lecolinet
and Baret (1994). Simon makes the distinction between the segmentation
approach and the global approach, according to whether words are identified
by recognizing individual letters or by recognizing words as a whole. In fact,
very few authors take the latter strategy. Plessis et al. (1993) use a holistic
match, but only to reduce the size of their lexicon before using a more de-
tailed recognition method. Lecolinet and Crettez (1991) use the terms explicit
segmentation and implicit segmentation according to whether an attempt is
made to divide the word into separate characters and recognize these individ-
ually, or if the segmentation is a by-product of a recognition process working
on a different unit of writing. Both approaches use strong evidence from
well-written parts of words, together with a restricted lexicon, to recognize
words which are partially badly written.

All the authors described below incorporate some form of preprocessing
to normalize and clean the data. Some preprocessing methods are described
in chapter 5. In each case, a recognition strategy then hypothesizes charac-
ter or word identities, and because exact recognition is very difficult, all the
approaches use a lexicon to constrain the responses to a known vocabulary.

Perhaps the most successful off-line handwriting recognition system is
that of Kimura et al. (1993b,1993a) who have created a system for reading
city or state names in addresses. These authors take a dual approach, with
a first, quick classification to reduce the lexicon size, followed by a more ac-
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curate second classification using different techniques. The first stage finds
a rough explicit segmentation and each segment is classified as a letter. The
second stage finds a different explicit segmentation by splitting the word into
disjoint boxes and joining the boxes together using dynamic programming to
form complete characters. These are then passed to a character classifier.
These authors report results of 91.5% recognition with a lexicon of 1000 words
on the CEDAR database of words segmented from addresses in the U.S. mail
(Hull 1993).

Cheriet and Suen’s (1993) approach is also letter-based. However, their
approach is to extract a number of key letters from each cursive word — par-
ticularly the initial letter and those clearly identifiable by ascenders, descen-
ders or loops. For a small vocabulary task (reading cheques) as described
in their paper, identifying these key letters might be sufficient to identify
most words, but the authors propose their techniques as a way of filtering,
to reduce the number of words in the lexicon of possible matches.

Papers by Srihari and BoZinovit (1987; BoZinovit and Srihari 1989) take
an explicit segmentation approach, but here each segment need not corre-
spond to a character. They find presegmentation points which include all
the boundaries between characters, but also split some characters into two
or more pieces. They then find features (16 in all, including dots, curves,
strokes, loops and cusps) within the segments by a series of event detectors
and use the features to construct letter hypotheses according to statistics of
feature occurrences gathered during training. Words are hypothesized via a
stack method, where the most likely prefixes are stored and expanded until
the word end is reached. After the first iteration of this procedure, the stack
contains all the hypotheses for the first letter in order of likelihood. The top
(most likely) hypothesis is then expanded by looking at what letters could
follow. The resultant two-letter sequences are put onto the stack, to be ex-
panded when they are the most likely sequences. At the end of the word,
the lexically correct word that is highest on the stack is chosen as the best
match.

Srihari and BoZinovit conducted a number of experiments, using differ-
ent writers and different lexica (780 and 7800 words). Testing on a single-
author database of horizontal, non-slanting writing, a 77% recognition rate
was obtained on the small lexicon, 48% on the large. A second single-author
database yielded a 71% recognition rate on the smaller lexicon.

Yanikoglu and Sandon (1993) take a similar approach. They find possible
character segmentation points and attempt to classify segments or groups
of up to three segments with a neural network classifier trained on isolated
letters. Incorrect segmentations tend to get lower classification scores than
when a letter is correctly segmented, and when the scores are combined in
a hidden Markov model, the best hypothesis for the groupings of segments
and their identities is found. Results of 70% for single-author cursive word
recognition are quoted for a lexicon of 30,000 words.

Edelman et al. (1990) have developed a handwriting reader which relies
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on the alignment of letter prototypes. Here, anchor points (e.g. endpoints;
turning points at the top, bottom, left or right of a character) are found in
the test word and these points are used to match the word against a set of
prototype curves, coded as splines, which can be composed into lower-case
characters. The system is hand-designed and is not trained automatically.
Using a 30,000 word lexicon, these authors obtained an 81% recognition rate
on the training set and around 50% on test sets by three authors. The stress
of this system is on recognition without a lexicon, however, and recognition
rates of 8-22% are given for three authors including the author whose writing
was used to develop the system.

The problem of reading the amount on cheques (section 2.3.2) has been
tackled by a number of authors in the problem posed by the French post
office. The task here is to recognize amounts written (in words) on postal
cheques and to use these to verify the amounts written in figures. Moreau
et al. (1991) identify a few characteristics of the cursive words and match
these to a set of reference words with Dynamic Programming. The identified
words are used together with a grammar to verify the amountin figures. With
a 60% rejection rate, the error rate achieved is 0.2%. Paquet and Lecourtier
(1991) reduce each word to a series of curves which they match to examples
in a lexicon. They achieve 60% correct on the 50% of words which are well-
segmented and later (Paquet and Lecourtier 1993) achieve an error rate of
59% when rejecting 9.5% of words. Leroux et al. (1991) take two parallel ap-
proaches — one is to recognize the word as a whole, by finding a few features
and comparing with reference words. The second is a letter-by-letter ap-
proach where the desire is to recognize only some of the letters, and to use
this information to restrict the lexicon. Their system correctly identifies 62%
of words. The system described by Simon (1992) achieves a 0.15% error rate
with a reject rate of 24% using a 25 word vocabulary.
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Chapter 3
Psychology of reading

There is an art of reading as well as an art of thinking and an art of
writing.
D’lsraeli.

Before attempting the machine recognition of handwriting, it is worthwhile
considering the way that people read and write. Considering human read-
ing may lead to an increased understanding of the transfer of information
through the medium of handwriting, so that it can be seen which processes
play a useful role, and which are merely epiphenomena. If it can be un-
derstood what information people use to recognize handwritten words, then
a clue is found as to what features might be useful for a machine recogni-
tion system. Other features are likely to be poorly preserved since they play
no useful role. Understanding handwriting production may similarly give
insights as to which features of handwriting are representations of the infor-
mation and which mere artefacts of the generation process.

A large body of psychological data has been gathered on the processes
involved in reading type, some of which is applicable to cursive script. Tay-
lor and Taylor (1983), Downing and Leong (1982) and Rayner and Pollatsek
(1989) give thorough reviews of the psychology of reading. Most research so
far has concentrated on reading individual letters or words out of context. It
could be argued that this gives little indication of the processes occurring in
normal reading where many words are visible and it is the text as a whole,
not individual words, that is important. However results are hard to prove
in such a natural environment with many variables, and it is only under re-
stricted experimental conditions that hypotheses can be rigorously tested.

Research into reading, as in much of psychology, relies heavily on observ-
ing what errors are made under difficult conditions. One technique is the use
of tachistoscopes to flash a word in front of a subject for a very short time fol-
lowed by a patterned mask to inhibit iconic memory, which otherwise allows
the subject to preserve an image of the word mentally for an uncontrolled
period of time.
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3.1 Reading by features

As will be seen later, many approaches to handwriting recognition rely on
detecting features in the writing, such as the strokes which go to make up
individual letters. Hubel and Wiesel (1962) describe the processes early in
the visual cortex. The complex cells that they discovered code the presence
of bars and edges and provide a compact representation of lines which is
particularly appropriate to the representation of writing and print. A number
of authors have sought to determine what higher-level representation might
be used specifically for letters.

Bouma (1971) investigated the features which people use to recognize iso-
lated characters by examining the confusions between letters presented ei-
ther at a distance or for a short time, eccentrically in the subject’s field of
view. Bouma uses the errors made by subjects to identify groups of confus-
able, or ‘psychologically close’, letters. Bouma’s classification is shown in
table 3.1.

Outer contour | Bouma shape Code | Letters
Short inner parts and rectangular envelope 1 as zx
round envelope 2 eoc
oblique outer parts 3 rvw
vertical outer parts 4 nmu
Tall ascending extensions 5 dhkb
slenderness 6 ti1f
Projecting descender 7 lgjpay
Table 3.1: Bouma shapes.
Shape type Number of words sharing the same shape
1 2 31 4| 5| 6| 718|910+
Outer contour 1389 | 250 | 102 |45 (23|20 |16 (9|7 36
Outer contour +initial | 2301 | 313 | 77 |34 |14 | 7| 2|3
Bouma shape 3201 | 83| 20| 3| 1

Bouma shape + initial | 3340 | 49 2

Table 3.2: Word discrimination using word shape measures on
the text of this thesis.

Using these classes, words can be encoded according to their shape, so
ﬁzg would become 527, but so also would anj which is seen to be similar
in shape. Taylor and Taylor used these Bouma shapes for a study on the text
of their own book. Table 3.2 shows a similar experiment on the text of this

Off-line handwriting recognition 22



CHAPTER 3. PSYCHOLOGY OF READING

thesis. The words are classified according to each of four shape description
techniques, and the number of words of each shape is counted. The outer
contour is a coarser coding than the Bouma shape, simply classifying letters
as short, tall or projecting. The outer contour is enough to specify 1389 of the
3444 words uniquely, but there are 36 shapes shared by ten or more words
each. If the first letter is known, the ambiguity is further reduced. The
Bouma shape, having more classes than outer contour, gives more unique
shapes — 3201 words are uniquely labelled.

This study shows that, in conjunction with a lexicon of permitted words,
a few simple features can identify most words, without the need to recog-
nize the individual letters. Haber and Haber (1981) have carried out similar
work into the effectiveness of letter shape for reading, and also give a deci-
sion tree which might be used to distinguish the letters of the Helvetica font
by observing only a limited set of features. Eldridge et al. (1984) investi-
gate the variability of some handwriting features comparing variation in an
individual’s handwriting with that between individuals.

McGraw et al. (1994) further investigate the features that might be used
in representing characters. Although their experiments are conducted with
machine-generated letters made up of straight line segments, they investi-
gate the recognition of letters at the limits of class-boundaries, so their work
is of relevance to handwriting recognition. They suggest that letter recogni-
tion is carried out by finding word features that fill roles in internal models
of letters. Thus a letter ‘v’ could be described as a loop with a short stroke
above and to the left, or as a tall stroke with a curved section joined at the
lower right. These authors do not consider the possibility of overlapping
features which might characterize the letter as well if not better. For in-
stance, a ‘b’ could also be described as a tall stroke overlapping a loop to the
right. They make the important point that the higher-level features used for
reading are not likely to simply arise bottom-up from the visual processing
system, as Hubel and Wiesel cells do, but to be defined top-down depend-
ing on the classes to be distinguished. This depends in turn on the writing
system to be read, just as when learning a new language the boundaries be-
tween phonemes have to be re-learnt according to the different distinctions
and groupings made in that language.

Many studies have also been made into the processes involved in writing.
If an accurate model of these processes can be found, then it could be used for
representation of handwriting in a compact form, and for recognition. Alimi
and Plamondon (1993) discuss a variety of models for handwriting genera-
tion, and Abbink et al. (1993) and Singer and Tishby (1993) have used the
Hollerbach (1981) model for modelling handwriting for recognition. Singer
and Tishby derive a very compact code which represents the handwriting
but also allows the easy removal of slant, slope and other variation, making
the writing more legible. Teulings (1994) discusses feature extraction from
on-line cursive script. As yet these approaches have usually been applied to
on-line script where the pen trajectory is accurately known. The static nature
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of off-line writing does not lend itself to these approaches, though Doermann
(1993) shows that off-line script can be considered in this way. However it
seems that, while compact representations can be found using the model-
based approach, reading is a visual process and dynamic approaches will al-
ways fail to represent data such as the dots on a letter ‘i’ appropriately, for
here it is important where the dot occurs, not when or how.

3.2 Reading by letters and reading by words

One of the fundamental findings of reading research is the importance of
recognition of words as single entities and not as the conjunction of their
component characters. Taylor and Taylor cite work by Kolers & Magee,
whose experiments involved training subjects on inverted text (where the let-
ters are all upside-down). They trained two groups — one to read words and
one to name letters — then each group was switched to the other task. No ev-
idence was found that learning one task improved performance in the other,
thus one may conclude that “relatively fluent reading requires familiarity
with the shapes of words, but not with the letters in those words.”(p.195)

Further evidence for reading by words rather than individual letters is
given by the word superiority effect. This is the term used for the phe-
nomenon that a letter is better recognized (more frequently recognized cor-
rectly when presentation time is short enough to induce errors) when pre-
sented as part of a word than when presented either on its own or surrounded
by arbitrary characters in a non-word (for instance in Reicher’s experiments
described by Rayner and Pollatsek p.77).

It is interesting to note the work by Yamadori (1975) and Sasanuma (1984)
which shows that damage to certain areas of the brains of Japanese read-
ers can severely impair reading of Kana (syllabic) script whereas Kanji (mor-
phemic) script is much less affected. This shows that different brain pathways
must be used for the two script types and indicates that the mechanism of
reading is more complex than it might at first appear. Downing and Leong
discuss the possibility of phonological, visual or both pathways for index-
ing an internal lexicon, and the evidence seems to suggest that people use
both a coding of the sounds of words and a coding of the visual image when
recognizing words while reading.

Taylor and Taylor propose a reading mechanism with three paths:

Whole-word process This is a rapid process taking perhaps 50-100ms which
is based only on the pattern of the word as a whole, or the first half-
dozen letters of longer words.

Letter-based process From 50ms after a word is presented, the individual
letter identities are becoming available. (This could be understood as a
progressive increase in the frequency of the filter used as suggested in
work by Marr (1982)). Outer letters are identified first, and may be used
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to adjust the first hypothesis of the whole-word process, or to generate
a new one. These authors also suggest that word units (prefixes and
suffixes) may be recognized as single items.

Scan-parse process This process is the slowest and uses the letter identities
to produce a phonetic version of the written word, which can be used
as additional evidence for the word identity.

3.3 Lexicon and context

Reading relies on the use of a lexicon of words. Words that are written un-
clearly can often only be identified because it is known that they must rep-
resent a real word, rather than one of the other letter strings that might be
‘read into’ the cursive word. The word of figure 3.1a could be interpreted
in many ways, but a reader would generally opt for ‘minimum’ because that
is a word. Psychological studies have verified the existence of some form of
internal lexicon, though the form that this takes is unclear. Nevertheless the
lexical decision task is an important tool in experiments. For this the exper-
imenter measures the time taken to determine whether a string of letters is
a word or not.

! :! 'l ..r i I
(b)

()

Figure 3.1: Word ambiguity. (a) is identified by recognizing the
two ‘i’s and knowing that the word must be in the lexicon. (b)
is still ambiguous unless context is supplied.

Context is also significant. The correct interpretation of the word rmin-
4mum’ is made even more likely in a passage about optimization. (But an-
other might be understood in the context of a discussion of non-words in
the psychology of reading.) Context is also important in choosing between
valid word hypotheses. The word in figure 3.1b could equally well be iden-
tified as ‘clump’ or ‘dump’ or even ‘jump’, and it is only from the meaning of
surrounding words that the two can be distinguished. Grammar can be suffi-
cient to distinguish ambiguous words, by determining from the surrounding
context whether a word is a verb or a noun, or whether a verb is transitive
or not. To implement this discrimination in an automatic system, some lan-
guage model must be introduced to determine legitimate word sequences.
Language models are discussed in section 8.4.
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Context is important for the skilled reading of passages of text, but is not
considered by Rayner and Pollatsek (p.62) to be an important influence on
the reading of the words within that text. However, the results quoted by
Edelman et al. (1990) show how difficult it can be to identify handwritten
non-words, thus highlighting how important a restricted lexicon and context
are.

“In comparison, people recognize correctly 96.8% of handprinted
characters [ Neisser and Weene 1960], 95.6% of discretized hand-
writing [Suen 1983] and about 72% of cursive strings (see [ Edelman
1988] appendix 1).”

Edelman’s (1988) experiment consisted of presenting non-word cursive strings
to four subjects. The subjects had to type their reading of the cursive string,
with no time limit to the responses, and allowing multiple guesses. Edelman
found the error rate consistent with the error rate for individual letters.

The problem of handwriting recognition is complicated by the fact that
much handwritingis intended for use only by the author. When people speak,
it is invariably with the purpose of being understood by someone else, and
that person is there to query any ambiguities immediately, or to indicate
if the speech is difficult to understand for whatever reason. There is feed-
back of any errors that are made, so behaviour can be corrected, with the
aim of transferring information most effectively. On the other hand, writ-
ing is usually read much later than it is created, and this feedback loop does
not exist. Writing not legible to others is easily accepted by an author who
already knows what is written. Particularly if a writer is used to wordpro-
cessing documents for consumption by others, notes written for personal use
may be written in a way that other readers cannot understand. Words may
simply become illegible mnemonics comprehensible only to the author who
knows the context in which they were written. However, it is just such notes
to one’s self that pen computers are designed to store and, it is claimed,
recognize — an exacting if not impossible task.

3.4 Summary

From the work that has been reviewed in this chapter, it is possible to extract
anumber of important principles which can be used for guidance in the design
of a machine to read cursive script. While following psychological studies
might not yield the easiest nor the best method of tackling this problem,
being aware of how people read gives an indication of the operations of the
best reading machine known. Those factors which are seen to be important
are summarized below, and taken into consideration in the design of the
handwriting recognizer in the subsequent chapters.

First, in the recognition of written forms, it seems that beyond the simple
representational level of the Hubel and Wiesel cells, people recognize letters
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by observing higher-level features. Though the exact features are unknown,
it seems that they correspond to such elements as loops, curved strokes and
straight line segments. If these features are how information is conveyed be-
tween people in handwriting, then they would be a good choice of feature for
a machine handwriting recognizer, as they are likely to be invariant between
writers and under different conditions. Further, while people learn to read
by recognizing individual letters, and this might be necessary for new or long
words, skilled readers take in whole words at a time. It can also be seen
that reading is made possible only by knowing that most words will fall into
a prior vocabulary, and by using the context surrounding words to overcome
ambiguity.
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Chapter 4

Overview of the system

Polonius: What do you read my lord?
Hamlet: Words, words, words.
Shakespeare. Hamlet.

Having reviewed the literature, it is apparent that until recent years there
has been a dearth of research and publications on the problems of off-line
recognition, but that there is great potential for applying successful systems
— particularly in the banking and postal fields. Recently the situation has
changed, but there still remains a significant gap between the performance
of research systems and the accuracy required for practical implementations.

To attempt to fill part of this gap, the system described in this thesis has
been developed to carry out all the operations of off-line handwriting recog-
nition, from scanning to producing a machine-readable document of recog-
nized words. This chapter briefly describes the whole system and then details
a number of issues relating to the complete design, including a description of
the databases used for experiments. Subsequent chapters present the other
aspects of the system in more detail.

4.1 Summary of parts

. - Recognition HMM
Scanning Normalization )
, Recurrent network Language modelling
Segmentation Parametrization Discrete HM M Duration modelling

Page of handwriting Single word image Encoded word Likelihoods Word

Figure 4.1: A schematic of the recognition system, showing the
main processes which must be carried out to identify the words
in a handwritten document.

The system described in this thesis can be conveniently divided into the same
broad sections as are found in most other handwriting recognition systems,
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such as those described in chapter 2. The system begins with data acquisition
and proceeds in a bottom-up manner, processing smaller amounts of data at
successively higher levels of representation, to arrive at a word identity which
can be output in ASCII code.

To capture data from a handwritten document, in general some sort of
scanner is used rather than a camera, to ensure controlled conditions, es-
pecially of lighting. A variety of scanners is available, from hand-held units
for reading a small amount of material, through flat-bed scanners and ma-
chines with sheet feed or page-turning, up to postal machines with a very
fast throughput.

The scanned image must be segmented into separate words (section 4.2)
and then a series of image processing operations is carried out to normalize
the image, as described in the first half of chapter 5. The latter half of that
chapter discusses the best way of representing the useful information con-
tained in the image. That chapter and the next also discuss the derivation
of handwritten features from the image, as a succinct way of describing the
shape of the handwriting.

Chapter 7 then discusses how data probabilities can be estimated from the
encoded feature information. Three different pattern recognition techniques
are described together with the training method for each. From each of these
the probabilities are combined in a hidden Markov model system (chapter 8)
which finds the best choice of word for the observed data. This system allows
the natural incorporation of prior information about the lengths of letters and
about a restricted list of permitted words, about the grammar of a language
and potentially even the semantic context of the writing.

4.2 Image acquisition and corpus choice

The success of any decipherment depends upon the exvistence and
availability of adequate material. How much is needed depends upon
the nature of the problem to be solved, the character of the material,
and so forth.

John Chadwick. The Decipherment of Linear B.

The system is designed to process data captured from a scanner, but for
research purposes it is convenient to work on a fixed database stored on
disk for repeatability and speed. Ideally work would have been conducted
using a standard database to produce results which would be easily com-
parable with the results quoted for other systems. In the speech recogni-
tion community the production of standard databases has made available
large corpora of speech which individual institutions could not collect them-
selves. This has enabled reliable comparison between different recognition
systems and encouraged competition, albeit tending to narrow the goals of
research towards performing well on the standard tasks. However, at the
start of this research there was no off-line cursive database available, so
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the only solution was to collect a new database. Subsequently the CEDAR
database (Hull 1993) has been released, but it is designed specifically for
the task of isolated word recognition from address blocks, and introduces a
number of special problems which did not fall into the already wide scope
of this research. These problems include having to deal with overlapping
words and having to remove guide lines, envelope patterns and other clutter,
though work has been done to remove much of this noise (Doermann 1993;
Kimura et al. 1993b).

In the database collected for this research, words were written by a single
author on a plain, white A4 sheet. The writer used a black fibre-tip pen which
gave clear strokes with sharp edges, but the strokes are wide and overlap.
The sheets, each containing 150-200 words, were then scanned on a flat-bed
scanner at 300 dots per inch resolution, in 8 bits (256 levels of grey) to produce
one file per page. Each page takes about 8Mbytes of storage in TIFF (Aldus
and Microsoft 1988) format, when not compressed.

The next task is to segment each page into its component words. Under
real conditions, this problem can be difficult. However, there exist published
techniques for performing this operation (Garris et al. 1994; Yanikoglu and
Sandon 1993) and it has not been studied in detail in this work. For this
database each word was written within a wide border of white space to fa-
cilitate segmentation. The algorithm for segmentation is thus very simple,
merely looking for blank horizontal lines to partition between lines of text.
Within lines of text, the algorithm looks for long horizontal gaps between
words. If the algorithm fails, the automatically determined bounding boxes
around words can be manually adjusted using a graphical tool developed for
the purpose. Figure 4.2 shows a section of a page of data with the automatic
segmentation displayed. Words are automatically labelled by alignment with
the machine readable file which was used to prompt the writer.

i sem:% mt
lempnrns  igpact
Hupe oy bl some of

Figure 4.2: A section of a page of the database, showing the
bounding boxes detected automatically.

Initial tests were carried out on a database of the numbers written out as
words (‘one’ to ‘nineteen’, tens from ‘twenty’ to ‘hundred’, plus ‘thousand’,
‘million” and ‘zero’). These words were chosen because they form a corpus
useful for an application such as cheque verification, but the small vocabulary
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enabled a reasonable study to be made in a short time and facilitated data
collection. Ten exemplars of each of these words were taken: three to serve
as a training set and four as test data (a test set of 124 images), plus a further
three to be used as a validation set (see section 7.1.3).

Subsequently, a larger data set was created by the collection of transcripts
of the Lancaster—Oslo/Bergen (LOB) corpus (Johansson et al. 1986). This
is an extensive corpus of modern English collected from a wide variety of
sources such as newspapers, novels and non-fiction books. The corpus as a
whole contains a million words with a vocabulary of around 40,000 words.
Writing out sentences from this corpus gives larger data sets permitting bet-
ter training of the recognition system and laying the foundations for future
work on language modelling to improve the results, based on work already
conducted, for instance by Kuhn and de Mori (1990). The LOB handwrit-
ten database contains 2360 training images, 675 validation images and 1016
test images from words written by a single author. Initial transcriptions con-
sisted entirely of lower case words, but subsequent additions to the database
have included punctuation and capital letters. The vocabulary of the tran-
scribed corpus is 1334 words, and results quoted use this lexicon size except
where stated otherwise. The size of this database is sufficient for training for
single-author recognition, but more data would be necessary to tackle the
writer-independent task.

It is hoped that more standard databases of off-line data will become
available as more research is conducted in the field. To encourage this and to
encourage cross-testing on multiple data sets, the database described above
has been made publicly available.!

4.3 A note on results

To provide a measure of the worth of each of the techniques presented, ex-
periments are described throughout the thesis and the corresponding results
are presented. Since there is usually no direct, objective measure of the effec-
tiveness of one technique compared with another, two techniques are often
compared by training a complete system for each of the possible conditions
and testing on an unseen test set. The final results obtained are percent-
age error rates showing the proportion of words in the test-set incorrectly
classified by the whole system. These error rates are used to compare two
techniques or determine an optimum parameter value by holding all other
variables constant. The standard experimental conditions for each part of the
system are made clear in the following chapters as those parts are described
(and are summarized in section 8.4.3), but many results are presented before
the whole system has been explained in detail. For comparison, since the
standard test vocabulary is 1334 words, random guessing would give a 99.9%

LA sample is available by anonymous ftp:
ftp://svr-ftp.eng.cam.ac.uk/pub/data/handwriting page_image.tar.gz
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error rate, and guessing the most likely word (‘the’) all the time would give
a 93.2% error rate.

Because the training of recurrent networks is found to be dependent on
initial conditions, results are subject to a certain amount of variation. Where
possible, several networks have been trained under conditions identical ex-
cept for the initial values of the weights. From these runs, an estimate /i of
the mean percentage error rate can be obtained, as can &, the standard error
of the mean. However, the training of recurrent networks is very compu-
tationally intensive, so it has not been possible to train multiple networks
for every experiment. In experiments where only one run has been carried
out, standard errors estimated from multiple runs under similar conditions
are quoted. Where two techniques are to be compared, statistical tests are
carried out. The one-tailed Student’s ¢-test is used for paired data, for in-
stance when several networks are tested under two different conditions, to
determine if the difference in the mean error rate is significant. The statistic
of the test is denoted 7'(degrees of freedom) and the relevant tabulated value
is shown as tgnificance(degrees of freedom).

Training and testing times are quoted in the following chapters. For com-
parison purposes, all times are given as the equivalent for a Silicon Graphics
R4400 Indigo with 150MHz clock. All times are approximate, and test times
are given as the average time per test word over the whole test set.

4.4 The remaining chapters

The next chapter describes the techniques used to normalize the word image,
and the coding schemes used to represent the data for recognition. Finally,
it describes the simple features which can be extracted from the skeleton of
a handwritten word. Chapter 6 describes a more complex technique which
can be used to extract larger scale features. The recognition systems which
operate on the encoded data to derive character probability estimates are
described in chapter 7, and chapter 8 explains the system used to make the
choice of the best word, given these estimates.

Finally, chapter 9 draws together the results of the previous chapters,
makes an assessment of the whole system and points to the possibilities for
further work building on that described in this thesis.
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Chapter 5

Normalization and representation

Lécriture est la peinture de la voix.
Voltaire.

The system described in this work is designed to identify a handwritten word
when presented with a scanned image. A system could be envisaged which
identified the word directly from the image presented, but the task of the
recognition system is greatly simplified by preprocessing the image, organiz-
ing the information and representing it in a more accessible manner. The
processing to be carried out before recognition consists of two major parts
— normalization and representation. The first of these attempts to remove
variations in the images which do not affect the identity of the word, and
the second then expresses the salient information contained in the image in
a concise way, suitable for processing by a pattern recognition system. This
chapter describes the normalization operations performed on each image by
this system.

5.1 Normalization

Cursive script varies in many different ways. In addition to the peculiari-
ties of an author’s idioscript, which mean that one writer can be identified
among thousands, there are the peculiarities of writing in different situa-
tions, with different media and for different purposes. In the recognition task
to be solved here, all this variation is irrelevant and serves only to obscure
the identities of the words, although in other applications, such as author
verification, this ‘noise’ may be of most interest. One way of reducing the
variation is to identify certain parameters of the handwriting that may vary
to give a different appearance to a word. Then, a procedure must be deter-
mined to estimate each of these parameter values from the sample word (or
several) and finally another procedure must be found to remove the effects
of the parameter from the word. The most obvious parameters include the
following:
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Height The height of letters will vary between authors for the same task, and
for a given author for different tasks (for instance dependent on the size
of guidelines given, or the amount of text to be fitted into a space);

Slant The slant is the deviation of strokes from the vertical. This tends to be
a writer-dependent parameter, but varies between words too;

Slope This is the angle of the base line of a word if it is not written horizon-
tally. Even when given a horizontal guide line, authors will write all or
some words with non-horizontal bases. Often this can be assumed to
be straight, but in extreme cases curved, ‘hill-and-dale’ base lines may
be observed (Srihari and BoZinovit 1987:p.229);

Stroke width This depends on such factors as the writing instrument used,
the pressure applied and the angle of the writing instrument as well as
the paper type;

Rotation If the pageis skew in the scanner, then all the words will be rotated,
by a process independent of slant and slope which are shear processes
in the production of the handwriting. In this system though, rotation
is assumed to be small and is removed by a combination of slant and
slope-correction transforms.

Scanned
Word Image Baseline Slant Smoothing and
——= Histogram . . -
Estimation Correction Thresholding
Slope J
Correction

Snake Distance
Fitting Transform

X3 Skeleton L

Parametrization Thinning
-

Figure 5.1: A schematic of the preprocessing operations needed
to normalize the image before it is encoded.

The system described here incorporates normalization for each of these
factors, reducing each image to one consisting of vertical letters of uniform
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height on a horizontal base line and made of one-pixel-wide strokes. Fig-
ure 5.1 shows a schematic of these normalization operations, which are ex-
plained in this chapter. The normalization process described in the following
sections is illustrated for a sample word in figure 5.3.

5.1.1 Base line estimation and slope correction

The character height is determined by finding the intuitively important lines
which are shown running along the top and bottom of lower case letters in
figure 5.2 — the upper and lower base lines respectively (using the termi-
nology of Srihari and BoZinovit), with a centre line between the two. With
these lines, the ascenders and descenders which are used by human readers
in determining word shape (section 3.1) can also be identified.

Ascenders
Upper base line

Centre line

Lower base line

Descenders

U

Horizontal density histogram

Vertical density
histogram

Figure 5.2: Histograms, centre line and base lines.

The heuristic used for base line estimation consists of the following steps:

1

O Ul B W

Calculate the vertical density histogram by counting the number of black
pixels in each horizontal line in the image. Vertical and horizontal den-
sity histograms are shown on the right and bottom edges of figure 5.2.
Reject the part of the image likely to be a hooked descender (as in the
letters ‘gqy’). Such a descender is indicated by a peak in the vertical
density histogram. The minimum in the histogram above this point is
found and the image is cleared from that point downwards.

Find the lowest remaining pixel in each vertical scan line.

Retain only the points around the minimum of each chain of pixels.
Find the line of best fit through these points (figure 5.3b).

Reject the outlying points and calculate the new line of best fit. This is
now considered to be the base line of the character.

Given the estimate of the lower base line, the writing can be straightened
to make the base line horizontal. This straightening is carried out by applica-
tion of a shear transform parallel to the y axis (figure 5.3c). Slope correction
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Figure 5.3: Successive stages in the normalization.
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can be carried out on whole lines to remove rotation in the scanned image
or skewed writing, and then carried out on individual words to remove local
transformations. Next, the height of the lower base line can be re-estimated,
under the assumption that it is now horizontal. The upper line may be re-
estimated using a similar procedure, though this is found to be less robust,
because of the presence of 4 strokes, which are harder to separate from the
body of text than are descenders, as Bozinovi¢ and Srihari (1989) observe.

5.1.2 Slant correction

Bozinovit and Srihari (1989) detail a complex method for letter slant correc-
tion. This involves isolating areas of the text which are near-vertical strokes
and estimating the slant of each of these. This procedure was found to be
very sensitive to the thickness of the writing and is unreliable when the writ-
ing is thinner than expected. However, by making an estimate of the writing
thickness from the distance transform (see section 6.1) and using an iterative
technique, a more stable version of this algorithm has been developed.

BoZinovit and Srihari’s algorithm commences by eliminating all horizon-
tal rows in a word which contain horizontal strokes. These are identified as
any rows which contain long runs of black pixels. The maximum number of
consecutive black pixels which can be permitted before a line is eliminated is
a parameter which must be specified. After each such row is eliminated, the
remaining image is in horizontal strips, some of which are too narrow to use
and are eliminated. (A second, less critical parameter is the smallest height
of horizontal strip which can be used to estimate the slope.) The remain-
ing strips are divided into boxes containing separate, near-vertical strokes in
each of which the centroids of the upper and lower halves are determined,
and the slant of the line between the two is calculated. Averaging the slants
across all such strokes gives an estimate of the average overall slant of the
word. The slant is corrected with a shear parallel to the xz-axis. Figure 5.3e
shows a slant-corrected word.

The modification which has been found to stabilize this algorithm is to
split the word into strokes for a range of values of the run-length param-
eter and to use the value which gives the greatest number of boxes. It is
under these conditions that the best slant estimates are obtained. A further
refinement is to discard boxes in which the stroke fragments in the top and
bottom sections are not connected and cannot be sensibly used to estimate
the stroke slant.

In practice, despite the modifications, the algorithm was still sometimes
found to give poor slope estimates, and an alternative technique was tried
and found to be more reliable. This involves finding the edges of strokes,
either by finding the contour of the thresholded image (Caesar et al. 19933;
Kimura et al. 1993a) or by using an edge detection filter. Both of these tech-
niques gives a chain of connected pixels representing the edges of strokes.
The orientations of edges which are close to the vertical are averaged to give
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an overall slant estimate. An estimate based on the Canny (1986) edge de-
tector has been used in this system. It is found to tend to underestimate the
slant as in figure 5.3d. Yanikoglu and Sandon (1993) find a similar estimate,
using the mode slant found by edge operators within £30° of the vertical.

5.1.3 Smoothing and thinning

To remove noise from the image, either from the original document, from
scanning defects, or from applying shear transforms to discrete images, it
is useful to smooth the image. This is carried out by convolution with a
2-dimensional Gaussian filter. It has been found that there is little noise
on a scanned image when using a black fibre-tip pen on plain white paper,
but degradation from this ideal situation is possible from a large number of
sources such as paper quality, age and condition; pen or pencil type; poor
illumination when using a camera rather than a flat-bed scanner; and show-
through from writing on the other side of a page.

Having normalized and smoothed the image, it is thresholded to leave
every pixel black or white. Next an iterative, erosive thinning algorithm is
applied to reduce the strokes in the writing to a width of one pixel so they
can be followed later. This is the skeleton of the word shown in figure 5.3f.
The algorithm used was that due to Davies (1990:p.153).

Skeletonization is a notoriously difficult problem to solve well, and many
algorithms have been written, with a variety of properties. Lam et al. (1992)
present a comprehensive review with 138 references. Despite this difficulty,
because the skeleton is to be coarsely parametrized later, a simple algorithm
was found to work well, and other algorithms that were tried (Zhang and
Suen 1984; Arcelli and Sanniti di Baja 1985) did no better. There is scope
for more work on identifying a suitable thinning algorithm for handwriting,
but it would seem that a model-based method such as those of Pettier and
Camillerapp (1993) and Doermann (1993), which use the knowledge that the
image is made from a series of strokes, is the most promising approach. Ulti-
mately what is required is a skeleton which represents the strokes perceived
when a human reader observes a word. Such a skeleton is probably best
found as that which approximates the path of the pen most closely (corre-
sponding to the data received in an on-line system), and not an algorithm
that best matches a human approximation to a pixel-based skeletonization
algorithm as has been suggested (Plamondon et al. 1993). Experiments were
carried out, matching skeletons of off-line images with the on-line data for
the same writing, but it was found that from conventional tablets there is
a large error (of the order of the stroke width) in the reported pen position
when the pen angle varies. Without better hardware, this investigation could
not be pursued.

It is worth noting that in the database collected here, the strokes tended
to be wide, making skeletonization difficult. In many papers, (e.g. Caesar
et al. 1993a) the stroke width is small, so skeletonization works well and both
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the skeleton and contour will give good approximations to the true pen path.

5.2 Parametrization

Now that the image has been reduced to a standard form, which highlights
invariants of the words and suppresses spurious variations, the normalized
image needs to be parametrized in an appropriate manner for input to the
network which is to carry out the recognition process. From the original
scanned image, which can take 8MB of storage space, all that is ultimately
desired is the identity of the words on the page, an information content of
the order of a few hundred bytes. One way of looking at recognition is as
a process of information sifting with the ultimate aim of deriving the word
identities. In order to process the data effectively with a recognition tech-
nique such as a connectionist network, they must be reduced in number and
transformed into a form more appropriate than a grey scale image. Data
representation is of prime importance in pattern recognition problems and
can easily mean the difference between a particular method solving or fail-
ing to solve a problem. The problem of representation is discussed more
generally by Marr (1982) and Winston (1984:ch.8). Speech is coded using
techniques such as filters, cepstra, Mel scale binning and vector quantization
before attempting recognition. These representations express the relevant
information in a much more useful form than the original time-varying volt-
age measured by an analogue to digital converter attached to a microphone.
Similarly, in script recognition, the useful, invariant information must be ex-
tracted from the written words while discarding the vast majority of redun-
dant variation. The remainder of this chapter describes the processes used
to reduce the amount of data used to describe a word, and deals with the
problem of how the word should best be represented.

5.2.1 Skeleton coding

The main method of parametrization used is to code the skeleton of the word
so that information about the lines in the skeleton is passed on to the recog-
nition system. An alternative method, based on the grey-level image is de-
scribed in section 5.2.3.

In the skeleton coding scheme, the area covered by the word is first di-
vided into a grid of rectangles. (Figure 5.4a.) The vertical strips (frames)are
of a fixed width for the whole word, a length determined by the height es-
timate of the character. Typically there are 6 frames in the horizontal space
occupied by one character height. This assumes that the character height
is proportional to the character width, which is a valid assumption for nor-
mal handwriting by a single author, but will not be as accurate for multiple
writers.
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Figure 5.4: Successive stages in the parametrization.
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The vertical resolution of the grid is chosen so that the word is divided
into seven regions, each of which can be identified as playing a definite, but
distinct role in the representation of handwriting. The regions close to the
upper and lower base lines identified in section 5.1.1 both contain most of
the horizontal movements in a word, representing the turning points at the
top and base of most small letters, and the ligatures between letters. These
two regions also contain the end points of short strokes. The middle re-
gion between these two lines captures important information about the short
strokes which make up the majority of handwriting, as well as containing the
internal detail of the letters @ and %'. The ascenders and descenders so im-
portant in the Bouma shape of a letter (section 3.1) are found in the regions
above the half-line and below the base-line, and two more regions can be
identified containing the endpoints or loops of ascenders and descenders.

A higher vertical resolution (16 regions) has been tried, but performance
was slightly lower because generalization was impaired; the storage require-
ment of the training data also increased. There is a variable number of verti-
cal frames in a word, with long words having more frames than short words,
but a given character will always occupy approximately the same number.
For each of these rectangles in the grid, four bins are allocated to repre-
sent different line angles (vertical, horizontal, and the lines 45 degrees from
these). Within this framework, the lines of the skeleton image are ‘coarse
coded’ as follows.

The one-pixel-wide lines of the skeleton are followed, and wherever the
skeleton enters a new box in the grid, the section in the previous box is coded
according to its angle. The box associated with this segment’s (x«, y, #) values
is now ‘filled’ (set to one). Segments which are not perfectly aligned with the
angles of the bins contribute to the bins representing the two closest orien-
tations. This representation can be seen to resemble the Hubel and Wiesel
cells which code information early in the visual cortex. These are tuned to a
particular spatial location and angle, but also respond to edges or bars with
similar parameters. Caesar et al. (1993b) and Bengio et al. (1994a) use sim-
ilar methods of representing off-line and on-line cursive script respectively.
This provides the latter with a method for coding the spatial relationships of
nearby strokes, and overcoming the problems of delayed strokes.

Figure 5.4b shows the input pattern schematically. Each line represents
a full bin and its position and orientation correspond roughly to the position
and orientation of the section of skeleton which gave rise to it. Because of
the coarse coding, some line segments contribute to two bins and this is seen
on the ‘¢’ stroke which is between the vertical and 45 degrees so both these
lines are shown in the corresponding boxes in figure 5.4b.

Hereafter, the first frame of data in the representation of a word will
be referred to as xo and the final frame x,. The frames (x,,...,x;) will be
denoted x’.
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5.2.2 Non-uniform quantization

The above description coded all the frames to be of equal width, and the
frames were chosen by blindly drawing a grid on the word image. The width
of the frames was chosen in proportion to the character height. In prac-
tice though, character height and width vary independently from author to
author, so it would be better if these scale factors could be estimated inde-
pendently. Also, rather than blindly placing the frames, it would be better if
they could be aligned more with the data. A single frame could then contain
all of a vertical stroke, rather than strokes slightly off the vertical ending up
in two adjacent frames.

Figure 5.5: The non-uniform horizontal quantization scheme su-
perimposed on the histogram of the original word and its skele-
ton.

To correct these two problems, a simple system has been devised, which
is similar to the system used by Yanikoglu and Sandon (1993) for finding po-
tential letter segmentation points. After the word has been normalized, but
before thinning, the horizontal density histogram is calculated and smoothed.
The maxima and minima of the smoothed density histogram are found, and
frame boundaries are defined to be the midpoints between adjacent max-
imum/minimum pairs. Further frames are added where the maxima and
minima are far apart, to ensure that the frames do not exceed a certain width
(chosen according to the character height). Figure 5.5 shows the centres of
segments found under this scheme. This quantization scheme is not com-
pletely robust, as small changes in the image can lead to different numbers of
maxima and minima, despite the smoothing. A better scheme could perhaps
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be designed, but this one has improved results over the uniform quantization,
as is shown in table 5.1.

Quantization Size of | Error rate
method network | [ o
Uniform 80 |15.6 | 0.72
Uniform 160 | 11.5 | 1.60
Non-uniform 80 (13.3(1.60
Non-uniform 160 | 9.6 | 1.60

Table 5.1: Error rates for networks trained on data sampled by
different quantization schemes. Results are shown for networks
with different numbers of feedback units (section 7.1.3).

5.2.3 An alternative approach

Instead of coding the image in this complicated fashion, it may be asked
whether it would not be much easier to simply present the recognition sys-
tem with the image directly. This would reduce the amount of processing
required, and skeletonization artefacts would not distort the data. The same
normalization procedures must be carried out to give scale, slant and slope
independence and the image must be sub-sampled to obtain a manageable
amount of data. Here a vertical resolution of 32 pixels is used for coding
letters with their descenders and ascenders. This makes each pixel approx-
imately square when using the same horizontal quantization, and gives a
similar number of bins to the skeleton coding. Figure 5.6 shows such an
undersampled grey-level image. Each pixel is stored in 8 bits or 256 levels of

oA

Figure 5.6: The word founds undersampled.
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The results obtained for this preprocessing technique are compared with
the skeleton coding method in table 5.2. The skeleton coding gives a much
lower error rate.

Representation | Error rate %

[ o
Line segments | 20.4 | 1.60
Undersample 31.7 | 0.84

Table 5.2: Error rates using line segment and undersampling
preprocessing methods.

5.3 Finding handwriting features

The previous sections have described how the original word image can be
normalized and encoded in a canonical form so that different images of the
same word are encoded similarly. However, the coding only represented
low-level information about the word, and coded it fairly coarsely to reduce
the information burden. The performance of the recognizer can be improved
by passing it more information about salient features in the word. Chapter 6
describes a method of finding large-scale features, but a number of useful
features can be easily discerned from the processing that has already been
performed on the writing.

Dots Dots above the letters ‘4" and ‘4’ can be identified with a simple set of
rules. Short, isolated strokes occurring on or above the half line are
marked as ‘i’ dots.

Junctions Junctions are easily found in the skeleton of the word, as points
with more than two neighbours. Junctions indicate points where two
strokes meet or cross.

End points End points are points in the skeleton with only one neighbour
and mark the ends of strokes, though they can be produced as artefacts
of the skeletonization algorithm.

Turning points Points when the direction of a skeleton segment changes from
upward to downward are recorded as top turning points. Similarly left,
right and bottom turning points can be found.

Loops Loops can be found from the skeleton or by performing a connected-
component analysis on the original image, to find areas of background
colour not connected to the region surrounding the word. A loop is
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coded by a number representing its area. A number of authors, includ-
ing Srihari and BoZinovic (1987), use the topology of a word as a feature.
However this is not always a good choice of invariant since extra loops
can easily be formed, or loops that could be expected might not be fully
closed. Ascenders can become loops, ‘t’ strokes can join up with other
letters to create a loop, and normally closed letters like @’ and o~ can
be left open or filled in normal handwriting.

Each of these features can be encoded in a single bin but, while it is only
useful to know whether a loop or dot is present in a particular frame, the
positions of the endpoints, turning points and junctions are useful and they
are recorded along with the angle bins for each horizontal strip. Thus in-
stead of four angle bins at each vertical position, ten features are encoded,
and an extra two features are associated with the whole frame. With seven
horizontal bands, this increases the size of a frame from 28 bytes (7 x 4) to 72
(7 x (4 4+ 4+ 2) 4 2), but the additional information improves the network’s
performance. Some of these features are shown in figure 5.4c, superimposed
on the line segment features. Endpoints are indicated by ‘@ shapes, turn-
ing points by ‘<’ and junctions by ‘x’. Table 5.3 shows the performance
improvement obtained by adding these features to the representation.

Representation Error rate %
il o

Line segments 20.4 | 1.60

Line segments with features | 18.2 | 1.60

Table 5.3: Error rates using line segment coding method, with
and without the skeleton features.

5.4 Summary

This chapter has described a variety of normalization methods for handwrit-
ten words and then described a coding scheme for those words. It has been
shown that a coding based on extracting information from the skeleton is
more effective than one based on the grey level of the image. Features have
been extracted from the skeleton and are found to improve recognition fur-
ther.
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Chapter 6

Finding large-scale features with
snakes

Let there be snakes! And snakes there were, are, will be. . .

Silvia Plath. Snakecharmer.
The previous chapter described a coding for handwritten words which records
the location and orientation of the line segments in the skeleton. This cod-
ing was then extended to incorporate low-level features which could be eas-
ily identified. All of these features were simple and local — depending only
on information from a small area of the image. However, in section 3.1 it
was seen that the features generally held to be of most significance in read-
ing were larger-scale, stroke-like features. It would be highly desirable if
information about the presence of such features could be determined and
concisely encoded for use in recognition.

A number of off-line handwriting recognition systems have used large-
scale features for recognition, indeed some are based entirely on the use of
such features. This chapter describes a new method of automatically finding a
large class of stroke-like features in cursive words written with broad strokes.
Before describing the method used in this system, it is worth looking at the
methods that have been used by other authors.

Srihari and BoZinovit (1987) define their features with rules based on the
contours of the word images. The features that are defined are short and long
strokes, curve sections, loops and dots. These authors constructed their off-
line data from on-line tracing information, which seems to have given smooth
curves and narrow strokes. However, defining rules that will reliably pick out
features when there is noise is extremely difficult, and relying on the contour
means that features that run across intersections can not be detected.

Edelman et al. (1990) use a method similar to that described in this chap-
ter to represent stroke-like features in on-line handwriting. They fit a num-
ber of prototype stroke features to the on-line handwritten string, and use
the identities of the strokes that matched to find letter hypotheses and even-
tually word matches. The method is described as optical matching, but the
datais again collected from a graphics tablet so the strokes are narrow and al-
low curve-fitting to the contour alone. Because stroke contours are smooth,
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enough strokes can be matched reliably along the length of the stroke se-
quence, and letter hypotheses can be proposed solely on the basis of these
features.

6.1 Finding strokes

The problem with both of the above methods is that they require clean data
and narrow strokes. They operate on the contour of the image, but the fea-
tures that should be detected are the strokes, which are better characterized
by the path of the pen centre than by either the left or right edge. Thus, this
chapter describes a method of finding the centres of strokes regardless of the
thickness of the stroke, the irregularities in the stroke edges, or the presence
of overlapping strokes or edges.

The centres of strokes are those parts which are furthest from the edges,
so a natural choice of representation to consider is the distance transform.
This assigns a value, D(z,y), to each pixel (z,y) in the thresholded image,
which is the distance of that pixel from the nearest background pixel, zero if
the pixel is itself part of the background. Thus circles in the image become
cones in the distance transform, the transform increasing the further a point
is from the edge, and strokes become ridges. Now detecting stroke centres
becomes a problem of finding ridges in the distance transform. The method
chosen to find these ridges is snakes.

6.2 Snakes

Snakes are deformable splines (smooth curve segments) placed in a potential
field which translate and deform to reduce their potential energy. Tradition-
ally they have been used to find edges in grey level images, by according low
potentials to areas of high contrast so that the snake seeks to match its con-
tours to high contrast edges. Such a use is seen in the original paper of Kass
et al. (1987). Further uses have included tracking curve sections in video se-
quences (Cipolla and Blake 1990), and extraction of features from faces (Yuille
et al. 1992). In the latter case, a parametric model was built for each of the
features to be extracted (e.g. eyes, mouth) and these were fitted to real im-
ages. Leymarie (1990) uses snakes to find skeletons in much the same way as
they are used here, attempting to find maxima of the distance transform. The
remainder of this section describes in more detail the mechanism underlying
the snakes’ operation.

The shapes of snakes are governed by cubic B-splines (Pavlidis 1992). A
series of NV control points {p; : ¢ =0,...,N—1}isdefinedin a two-dimensional
plane and the actual spline path generated is an interpolation of these points
(figure 6.1), each point x(s), s € [0, N—1] on the path being a weighted sum
of the nearest control points’ positions. B(s) is a polynomial function which
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determines how much weight is given to each control point, according to
the parameter s which increases from one end of the curve to the other. The
B-spline is forced to terminate at the end control points by generating ‘phan-
tom’ control points p_; = 2po — p1, and py = 2py_1 — PN _2.

N

x(s) = > B(s+2—1i)p; (6.1)
i=—1
éSS 0<s<1
I tem2p (- 1<az2
B(s) = { 241s—2P—(s—2) 2<s<3 (6.2)
Lg 2y 3<s<4
0 elsewhere.

The spline shown in figure 6.1 has the minimum four control points. For
more complex shapes, more control points can be added, but each point on
the curve is only determined by the four nearest control points. Other (non-
cubic) splines can be defined, interpolating more or fewer control points. The
weighting polynomials ensure continuity and smoothness (C?).
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Figure 6.1: A snake with four control points and the distance
transform along a normal.

Given the positions of the control points, the snake can now be located
on an image. How it moves, according to the features in the image, must
now be defined. A potential function — f(z,y) is defined on the pixels {(z,y)}
where the snake is to be attracted to curves of high values in f. f might be
intensity 7, contrast |V/|* or, as in this case, the distance transform D(z,y).
Here the city-block metric D =| Az | + | Ay | has been used for simplicity of
computation.

The spline curves are sampled so that M samples are generated per unit
in s. At each sample point s, the normal to the curve is searched for the
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minimum of the potential function —f within a certain distance on either
side. The displacement of the minimum is recorded for each sampling point,
and these displacements are then added to the control points to move the
snake towards the local maxima. Since each sample point is a weighted sum
of the nearest four control points:

X(Sk) = B(Sk +2 - i)Pi + B(Sk +1 - i)p¢+1 + B(Sk - i)p¢+2
+ B(sy — 1 —)pisa. (6.3)

the displacement d(s) is distributed among these control points:
1 .
pi(t+1) = pilt) + 57 > Blsk +2 = )d(se). (6.4)
k

The new control points define a spline which lies closer to the lines of local
maxima, and after two or three iterations a good match will be found if one
is present in the search area around the snake’s initial position.

6.3 Point distribution models and constraints

As defined above, these snakes do not serve the purpose of feature recog-
nition. They are very flexible, so any snake can adapt to fit a wide range of
feature shapes, even collapsing to a point in some potential wells. To com-
pensate for this, Kass et al. define an internal energy based on the integral
of first and second derivatives along the snake’s length, to penalize high cur-
vature. This general ‘straightness’ constraint suits the purposes of tracking
edges in images, but to find features, the constraints need to be chosen so
that the snake can only match features of a particular shape.

A number of models must be generated, each matching a particular fea-
ture, but able to match instances of that feature whole shapes vary some-
what. Cootes and Taylor (1992) describe ‘Point Distribution Models’ (PDMs)
which they use as shape descriptors for various objects such as hearts in mag-
netic resonance images and resistors on images of circuit boards. The essence
of the PDM is performing Principal Component analysis on the covariance
matrix of the coordinates of the control points of a snake, and restricting the
snake’s shape to match shapes that have been seen in a training set.

If a snake with »n control points is placed on A examples of a particular
feature, for instance the short vertical stroke of an ‘4’, the positions of the
control points can be recorded and statistics gathered. If the £th example

feature has position s; = (pro,...,Prn_1) the centroid of that example can
be found:

_ >i Pr

By = 5’“ . (6.5)
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The mean displacement of each point from the centroid can be calculated by
subtracting the centroids and averaging:

5Sk = (pk70 — Dks - Prn-1 — I_)k)T (66)

o >k OSk
s = . 6.7
S K ( )

Js is the mean shape of the feature and represents a typical example. If the
deviation of a particular example from the mean shape of a feature is found:

ASk = (SSk — E, (68)

it can be considered as a vector of 2n coordinates and the 2n x 2n covariance
matrix X of the shapes can be found:

S, AspAs]

—
K

(6.9)

Principal Component Analysis can be carried out to determine the modes
of variation in the system. This is done by diagonalization of the covariance
matrix. Each eigenvector shows a correlation in the variation of the point
coordinates — a ‘mode’ of variation in which the points concerned have lin-
early related displacements. The eigenvalues give the extent of variation in
the direction of the corresponding eigenvector, so the largest eigenvalue’s
eigenvector captures most of the variation in the model shape. These modes
are strikingly demonstrated in Cootes et al.’s (1992) resistor model where
the first few modes correspond to natural physical parameters such as the
position of the resistor on its wire, the bend of the wire, and the shape of the
resistor body. Figure 6.2 shows the major modes of variation of two feature
models.

Annnnnaana JO00000000

Figure 6.2: Snake models for ' and ' features showing the
major mode of variation within =1.5¢ of the mean.

Having determined these modes of variation, they can be used to con-
strain the variation of a snake. Having worked out the new position of a
snake with no constraints, from one iteration of the techniques of section 6.2,
the centroid of the snake is calculated from the new control point coordinate
vector. Transforming this difference into the coordinate frame of the principal
components gives the deviation from the meanin each direction. Variation in
the minor modes is suppressed since this represents deviation from the space
of typical stroke shapes. The Mahalanobis distance d?(As) = As'¥~'As
shows how much the snake deviates from the model. This distance scales
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down variation along the principal axes, giving a measure of how many stan-
dard deviations the snake lies from the mean, assuming that deviations of
snakes from the mean are distributed as a Gaussian ellipsoid. If the distance
is too great, it can be reduced by scaling down all components of the devi-
ation. The constrained deviation is then transformed back to the original
coordinates, and added to the centroid to generate a new snake which will
have a shape similar to those observed in the training set.

Because the displacement to find the distance transform maxima and the
application of the constraints are two separate processes, and because the
image space is quantized, it is possible that the snake enters a cycle of dis-
placing onto the maximum and being constrained to its original position. The
snake thus never reaches a stable position. To avoid this case, the fitting pro-
cess is stopped after a maximum of 10 iterations, though a match is usually
found after just 2 or 3 iterations.

Lanitis (1992) and Lanitis et al. (1993) have investigated the use of these
models for isolated character recognition for postcode reading. Here a model
is produced for each of 36 alphanumeric characters and these models are
matched to pre-segmented images of handwritten characters from a postcode
database. Each model is compared with each image, and the best match is
chosen. These authors do not use the distance transform for the match, but
instead rely on the skeleton, which can often be distorted away from the
actual strokes at intersections.

6.4 Training feature models

In this work the ideas of splines and principal component analysis in the form
of point distribution models have been linked together to form constrained
B-spline models of features of handwritten letters.

One modelis constructed for each feature to be recognized. Ininitial stud-
ies these features have been: ' hump; ‘4w’ trough, which also models liga-
tures; ‘4’ stroke (found in many letters including ‘.’ and #'); ‘4’ cross-stroke;
ascender; descender and o’ shape. Each of these features can be modelled
by a single spline, though other models such as %’ may be constructed by
joining more than one. Each model contains the mean displacement §s of
each of the spline control points; the permitted relative variations in these
point positions, given by the covariance matrix ¥; and the mean and vari-
ance of the observed y co-ordinate of the centroids p;, to record how high
in a word the feature occurs. The preprocessor determines character size, so
the coordinates are normalized to be independent of the writing size.

Initially a seed model is generated by hand to describe the general char-
acteristics of the feature:

e The number of points needed to model the feature. For a small, straight
feature, only four points may be necessary. For a longer line or a curve,
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six are found to be adequate, but for an ‘o’ or ‘s’ feature, eight points
are required to represent the shape.

e The feature topology (loop orline) and the interconnection of the splines
(whether they form an %’ or whether a loop has a tail or not).

e The position of the feature in a character — whether the feature is in
an ascender, a descender or in the middle section of lower case letters.

e The initial shape of the feature.

The seed models are now matched to instances of the features in images
of handwritten words. Initially this can be by pointing out feature instances
manually, and allowing the seed model to deform without constraint from the
mean to match the stroke. When the potential minimum has been found, the
snake’s shape is added in to the statistics of observed shapes. When a good
model has been found, this procedure can be automated so that the features
in a word are found automatically. The automatic feature spotting is used
both to train the models and subsequently to spot the features used in the
recognizer.

6.5 Finding feature matches

Having created a model for each of the features to be found, the next step is
to find all occurrences of each feature in the word. The methods described
above will find a feature match if one lies close to the starting position of the
snake, so snakes must be placed at regular intervals along the word to detect
all the features present. A snake, whose shape is initially the mean shape for
the model, is placed at the left edge of the word, and permitted to deform
to match the distance transform potential, but with the deformation being
constrained to lie within « standard deviations of the mean shape — so the
shape will always be similar to shapes already taken by that feature before.
(For x, a value of 1 has been used here.) A best match given the constraints is
found by iterating for a limited number of times or until the snake ceases to
move. Should the snake move above or below the band where it is normally
found, for instance a 4’ stroke feature matching the top of an ¥-, then it is
rejected. Otherwise, the degree of match between the snake and the image
is determined.

The degree of match, M, is defined as the difference of two components,
representing the degree of support that the data provides for the model and
the amount of deformation of the model required to fit the data. The sup-
port is the sum of two components: the sum of the distance transform along
the length of the snake plus an extra weight, w, for all points that are not
background points, and the deformation is measured with the Mahalanobis
distance d(As) of the match shape from the mean shape of the feature.

M = 3 f(x(si)) + wy — d(As) (6.10)
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0 otherwise.

where w;, = { wif f(x(si)) #0, (6.11)

Snakes with scores greater than a threshold are accepted as feature matches,
and the remainder are rejected. The extra weight acts as a penalty for the
model crossing areas that are not strokes. Its value is determined empirically
(typically 7) and the value of the threshold is adjusted in accordance with this
value and the mean value of the distance transform. This makes the matching
process independent of the width of the strokes since thick strokes give ridges
with higher distance transform values than thin strokes. The mean value of
the distance transform is also used to indicate the stroke width in the mod-
ified slant detection algorithm, and to give the spatial frequency parameter
for the Canny edge detector (section 5.1.2).

This is in contrast to the measure of fit used by Lanitis, who adds two
components — the amount of data modelled by the snake and a penalty for
the amount of data which the snake fails to model. This is to prevent, for
example, an ‘L’ model being matched to a ‘B’. 1f the unmodelled data were
not taken into account, the ‘" model might appear to match the ‘B’ along
its whole length. Since only a small part of each image is to be matched at a
time, such a measure would be inappropriate here.

After each match, the shape and height of the snake is re-initialized to
the mean and is displaced to the right by half its width, where the procedure
is repeated until the whole word has been searched for that feature. In this
way, each feature is matched across the whole of each word in the training
set. It is possible that two successive placements of a snake will converge
to the same feature, but multiple matches of this sort can be rejected on the
basis of the x co-ordinates of the centroids being very close. Figure 6.3 shows
all the matches for the features used in a variety of words.

For this application, the feature matches must be coded in the same pre-
processing format described in the previous chapter. In this case, one more
byte per snake model is allocated in each frame, and whenever a feature
match is found this is recorded in the appropriate place in the frame which
corresponds to the centroid of the matching model. In fact one model might
span several frames, but the match is only recorded in the central frame.

Method Error rate (%)
i 5

With snake information | 15.6 | 0.72

Without 18.2 | 1.60

Table 6.1: Error rates with and without including snake infor-
mation.

Table 6.1 shows the improvement gained using snake features in addi-
tion to the basic skeleton coding of chapter 5. Adding the features into the
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Figure 6.3: Different features found automatically in several
words.

representation reduces the system error rate.

6.6 Discussion

The speed of the preprocessing algorithms has not been discussed so far,
since the system described here has been designed for flexibility in compar-
ing alternative algorithms rather than for maximum speed. In particular, a
large number of intensive raster operations are carried out, which could be
combined for greater speed. The speed of preprocessing in the current sys-
tem is approximately one second per word. This could easily be considerably
reduced by optimizing the program, and many of the operations should be
easily parallelizable for an application requiring high speed.

It is difficult to have many features since with wide strokes, features tend
to overlap in their roles and match the same parts of words. For example
if one were to train a ¢’ shape, it would be likely to match ‘4’ strokes too.
For the same reason, it is found that maintaining a useful degree of flexibil-
ity in the constraints on an ‘o~ feature to make it fit a wide variety of o’'s
means that it is also flexible enough to collapse and match ‘4’ strokes. Fur-
ther individual constraints could be imposed, in the manner of Yuille et al.
(1992), but would mean losing the simplicity of this system. If the matching
and constraints could be made more reliable, it would be desirable to make
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a more complete set of snake features that would provide a complete cover
of the word image, accounting for all the ink. Such a coding could be used
as a complete representation of the word, much more compactly than the
skeleton representation. Then, as with Edelman et al.’s system, recognition
could be based on this representation alone.

Alternatively, character models could be developed from multiple snakes,
giving matches for whole characters within a cursive string as those of Lanitis
do for isolated capital letters. Hinton et al. (1992) also use spline models for
entire characters. They model the ink of digit images as being generated
by Gaussian sources distributed along a spline whose shape matches that of
the character. They use probabilistic methods to define an energy measure
which is minimized to adapt their models to the data. While the method is
attractive, the authors admit that it is slow, and has not proven to match
other approaches. Such whole character models could also be adapted to
multiple positions in a cursive word to find reliable character matches, either
for preliminary lexicon reduction as done by Cheriet and Suen (1993) or as
an additional source of knowledge for any recognition system.
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Chapter 7

Recognition methods

...in learning to read we were satisfied when we knew the letters of
the alphabet, which are very few, in all their recurring sizes and
combinations; not slighting them as unimportant whether they occupy
a space large or small, but everywhere eager to make them out; and
not thinking ourselves perfect in the art of reading until we recognize
them wherever they are found.

Plato. The Republic.

The next stage in the process of deducing word identities from handwriting
is to recognize what is represented by the frames of data created in the pre-
vious chapter. A variety of pattern recognition methods is available, and
many have been used for handwriting recognition by other authors. Here
three techniques are presented which calculate an estimate of the probabil-
ity of any given frame being part of the representation of a given letter. How
these probabilities are combined together to find the most likely word is
explained in the next chapter; this chapter simply describes how these prob-
ability estimates can be derived.

There are several established methods of estimating a sequence of prob-
ahilities from a sequence of data. The speech recognition community has
been finding solutions to this problem for some time, and their solutions
are applicable to the problem of handwriting recognition. From the litera-
ture, three main methods emerge. Hidden Markov models have become the
most widely used approach to modelling speech (e.g. Woodland et al. 1994).
Feed-forward neural networks have been used by several authors, including
Bourlard and Morgan (1993), and recurrent neural networks have also been
successful in this field (Robinson 1994).

Other authors have used these approaches to on-line recognition, esti-
mating probabilities for short sections of the input data. Among these are
the hidden Markov models of Bellegarda et al. (1994), Nag et al. (1986) and
Starner et al. (1994). The latter have obtained good results simply using a
speech recognition system with handwritten data. Time-delay neural net-
works (TDNNs), a form of feed-forward network, are used by Schenkel et al.
(1994) and Manke and Bodenhausen (1994).
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These methods are also applicable to off-line handwriting, though there is
no longer a readily apparent time-ordering of information. Instead the z-axis
is divided up to give successive frames, processed left-to-right in the same
way as scanning processes of reading. Caesar et al. (1993b) and Gilloux et al.
(1993) use hidden Markov models for off-line recognition, though the latter
use a sparse z-ordered series of large-scale features, unlike the representa-
tion with many parallel features per frame that is used here. Breuel (1994)
uses a feed-forward network for classifying off-line handprinted strings.

In this work, all three of these methods have been investigated as meth-
ods of estimating the data likelihoods P(x]|A;) which are used to find word
likelihoods in the next chapter. The remainder of this chapter describes each
model, though intensive study was not made of TDNNs because they did not
perform as well as the recurrent networks in early trials.

7.1 Recurrent networks

This section describes the recurrent error propagation network which has
been used as one of the probability distribution estimators for the handwrit-
ing recognition system. Recurrent networks have been successfully applied
to speech recognition (Robinson 1994) but have not previously been used for
handwriting recognition, on-line or off-line. Here the time axis is replaced
by the horizontal displacement through the word, frames representing not a
speech signal over time, but successive vertical strips from a word, working
left to right. A recurrent network is well suited to the recognition of patterns
occurring in a time-series because the same processing is performed on each
section of the input stream. Thus a letter @’ can be recognized by the same
process, wherever it occurs in a word. In addition, internal ‘state’ units are
available to encode multi-frame context information so letters spread over
several frames can be recognized.

Recurrent networks are a type of connectionist (often termed ‘neural’)
network; that is to say they are composed of a large number of simple pro-
cessing units with many interconnecting links. Each unit merely outputs a
function of the weighted sum of its inputs, but the usefulness of such net-
works resides in the existence of training algorithms which can, by repeated
presentation of training examples, adjust the weights to converge towards a
desired function approximation. In this case the network is taught to rec-
ognize letters and the functions to be approximated are letter probability
distributions P(A;|x).

The recurrent network architecture used here is a single layer of standard
perceptrons with nonlinear activation functions, as described by Rumelhart
et al. (1986). The output o, of a unit is a function of the inputs «; and the
network parameters, which are the weights of the links w;; with a bias b;:

oi = fi{o;}), (7.1)
oi = b+ awy. (7.2)

Off-line handwriting recognition 57



CHAPTER 7. RECOGNITION METHODS
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Figure 7.1: A schematic of the recurrent error propagation net-
work. For clarity only a few of the units and links are shown.

The networkis fully connected — that is, each inputis connected to every out-
put. However, some of the input units receive no external input and are con-
nected one-to-one to corresponding output units through a unit time-delay
(figure 7.1). The remaining input units accept a single frame of parametrized
input and the remaining 26 output units estimate letter probabilities for the
26 character classes. The feedback units have a standard sigmoid activation
function f(o;) = (1 +e77)~', but the character outputs have a ‘softmax’ acti-

vation function f;({o;}) = izg] (section 7.1.1).

During recognition (‘forvizard propagation’), the first frame is presented
at the input and the feedback units are initialized to activations of 0.5. The
outputs are calculated from equations 7.1 and 7.2 and the output letter prob-
abilities are read off from the outputs. In the next iteration, the outputs of
the feedback units are copied to the feedback inputs, and the next frame pre-
sented to the inputs. Outputs are again calculated, and the cycle is repeated
for each frame of input, with a probability distribution being generated for
each frame.

It can be shown (Bourlard and Morgan 1993:p.118) that when the global
minimum of the network is reached, assuming that the network has enough
parameters and the training scheme can find the global minimum, the net-
work outputs will approximate the posterior probabilities P(A;|x}). 1t will
be seen later (chapter 8) how these probabilities can be combined to obtain
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word likelihood estimates in a Markov model framework. This framework
makes use of the data likelihoods P(x;|A;) which can be approximated by as-
suming that the current character class is conditionally independent of the
previous frames, given the current frame. (i.e. that P(A;|x;) = P(A;[x}) which
is a standard assumption made by researchers using hidden Markov models
to model handwriting). Then the following equation can be used (Bourlard
and Morgan 1993):

PAilx)

P(A;)
The assumptions used in making this approximation are explained further in
the next chapter.

To allow the network to assimilate context information, several frames
of data are passed through the network before the probabilities for the first
frame are read off, previous output probabilities being discarded. This in-
put/output latency is maintained throughout the input sequence, with extra,
empty frames of inputs being presented at the end to give probability dis-
tributions for the last frames of true inputs. A latency of two frames has
been found to be most satisfactory in experiments to date. A longer latency
to incorporate whole letters in the context would be ideal, but learning long
term dependencies in recurrent networks is not easy (Bengio et al. 1994b)

because of the number of layers through which errors must be propagated,
and a compromise is used.

Plx|As) o (7.3)

7.1.1 Training

t=0 t=1 t=2 t=3 t=4
'SR 'SR 5 'R . 'R N 'R -
o . 2 o 0
9 Feedback O Feedback 1 Feedback 2 Feedback 3 >
N N N \_/ \_

Figure 7.2: A network ‘unfolded’ for training after forward prop-
agation on four frames of data. An input/output latency (sec-
tion 7.1) of one frame is shown, so the first outputs are discarded
and the last frame input is all zeros. The feedback units are ini-
tialized to 0.5 as described in section 7.1.4.

Training the network requires ‘unfolding’ it in time. During training on a
word, the frames of data are input and propagated forward, as for recog-
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nition, but the inputs, outputs and feedback activations for each frame are
stored. At the end of a word, errors in the network’s output are propagated
back using the generalized delta rule (Rumelhart et al. 1986), and changes
to the network weights are calculated. The network at successive time steps
is treated as adjacent layers of a multi-layer network (figure 7.2). This pro-
cess is generally known as ‘back-propagation through time’. After processing
(7+1) frames of data with an input/output latency, the network is equivalent
to a (7 4+ 1 + latency) layer network. Readers are referred to Rumelhart et al.
(1986) and Robinson (1994) for a detailed description of the basic training
procedure.

It is widely recognized that this back-propagation algorithm can be im-
proved in a variety of ways, to speed convergence and to make convergence
to a good local minimum more likely. In addition to the incorporation of
a momentum term in the weight update formulae, two such improvements
have been used in this work, namely Jacobs’ delta bar-delta update rule (Ja-
cobs 1988) and Bridle’s (1990) softmax. The former provides for individual
learning rates for each weight which adapt according to the signs of succes-
sive weight changes. The latter provides a different transfer function on the
output units of the network, ensuring that the outputs are between 0 and 1
and sum to 1 (as is desirable since they are treated as probabilities). This
also trains the network according to a relative entropy (between the out-
put and target probability distributions) error criterion instead of the least-
squares error measure more commonly used in back-propagation networks.
Because of difficulties in training stability, modifications to the delta bar-
delta rule suggested by Robinson and Fallside (1991) were incorporated and
gave much improved convergence. These changes use multiplicative learning
rate changes and prevent the learning rates from deviating too far from the
mean. For this work an additional measure was taken, of zeroing momen-
tum terms when the mean output/target relative entropy over the training
set increased.

Training times for neural networks can be very long. In this instance train-
ing takes several days on a fast computer. (More than 3 days of CPU time for
an 80-unit network.) In addition to the methods described above, a number
of other ways to improve training speed have been explored. The most sig-
nificant is to choose an efficient training schedule. This specifies how many
patterns should be presented to the network before each weight update. Ini-
tially the weight updates from different patterns will tend to be in roughly
the same direction, as the network moves to an appropriate region in weight
space. Later the updates from different patterns will be in different direc-
tions, and the updates need to be smoothed to find the best displacement for
the whole training set. Thus, at the start of training, weights can be updated
on a per-pattern basis (‘on-line’ or ‘stochastic’ training), but for fine-tuning
near the end of training, weight updates should be averaged over a larger set
of data.

In this application, a number of simple schedules have been tested, with
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the best being to start by updating on a small number of words, typically
a batch of four words or about 80 frames. Then, whenever the mean rela-
tive entropy increases, the batch size is doubled, with a corresponding cut
in the step size parameter. This continues up to a limit of 1024 words per
batch (roughly a third of the training set). The momentum factor also con-
trols this smoothing, but no schedule based on changing this parameter was
found to be as good. This is, however, the method preferred by Robinson
(1994) who increases the momentum parameter (the degree of smoothing)
over time. Bourlard and Morgan (1993) also prefer on-line training. The
choice is perhaps largely to do with the size of the training set. Although the
handwriting database was large (56,000 frames), it was feasible to calculate a
weight update based on a third of the training set, which is impossible for the
much larger speech databases. The presentation of all the training examples
to the network is called an epoch. The number of weight updates per epoch
decreases to three during training.

The Quickprop weight update scheme (Fahlman 1988) was also tried. This
approximates the error surface as a quadratic, with diagonal covariance, and
uses quadratic interpolation to predict the minimum in each dimension. This
is effective for small dataset problems, where weight updates are always
based on the whole dataset, so a good estimate of the true error surface
can be obtained. The method did not perform well with the on-line training
used here, as the shape of the error surface is different for each batch of data.

7.1.2 Network targets

For training, a target value must be given, against which the network output
can be compared in order to compute the error in the outputs and the weight
updates. The target value is given in the form of a label for each frame of
the training data, indicating the correct class — the class for which the net-
work output should be one, all others being zero. With the data collected
here it is a relatively simple matter to associate the word label with each
word image (section 4.2). However, the labelling of individual frames with
the corresponding class is not as easy, and some thought must be given to
this problem. Unlike the segmentation problem of most handwriting systems
(section 2.3.2), this is not the problem of determining where the test word
image must be split to separate its component letters, but that of assigning
a letter label to each of the frames of a training word. This is only for train-
ing purposes, and need not be carried out on test words. In new data, this
frame/letter correspondence is not trivially determined; it can only be truly
carried out by accurate recognition — a catch 22 situation. For some prob-
lems, such as speech recognition, people have resorted to hand-labelling data
to give an initial training set. This has been avoided here by using a ‘boot-
strap’ scheme which derives an approximate segmentation from a very naive
technique. This segmentation is good enough to train the network to a point
where its own segmentations are more accurate. Hand segmentation would
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be more accurate still, so might give improved results, but would require a
large amount of tedious work, for little or no gain.

The scheme used initially is an ‘equal length’ scheme, where each letter
in any word is assumed (though this is clearly inaccurate) to occupy the same
number of frames of input. Thus, in an » letter word which takes r+1 frames,
the first =1 frames are labelled with the first letter of the word. In ‘nowr’,
for example, one quarter of the frames are assumed to belong to each letter.

This can be made slightly more accurate by recognizing that «’ and ' are
longer than other letters and ‘4’ and ‘¢’ are shorter. Letters in these classes
are given relative lengths of 3 and 1 respectively, compared to 2 for other
letters. The frames are then labelled in proportion to the relative lengths of
the letters in the word. Thus, in the word wig’, the first half of the frames
would be considered to represent the w’, the next sixth the ‘4’ and the re-
maining third the 4’. 1t is this segmentation that gives the targets which the
recurrent network is trained to reproduce. The targets are set to one for the
correct class and zero for all other classes.

These targets are only used for preliminary training. Re-estimated targets
are used to achieve greater performance. The re-estimation process will be
described in chapter 8.

7.1.3 Generalization

A problem with network training is to obtain the optimum solution to the
trade-off between training and generalization. This well-known problem can
perhaps best be seen by considering the problem of curve-fitting to » data
points. An (n — 1)th order polynomial can be found to perfectly interpolate
any such set, but if there is any noise in the data, the values on the curve
between will correspond badly to the values of any subsequently observed
data-points. The curve is over-fitted, and generalization is poor. Similarly,
in training a recurrent network, given enough time and computing power
it should be possible to train a large enough network to match the desired
targets arbitrarily closely. However, such a network will give poor general-
ization and make poor predictions for inputs other than those included in the
training set.

One way of maintaining good generalization is to make sure that the net-
work size is right for the size of the problem. In this case the number of
parameters is kept down and the order of the model is chosen to be appro-
priate to the task to be solved (e.g. fitting a straight line to the » data points
when a linear effect is being modelled). For complex problems the size of
the network for optimum generalization is difficult to determine, though in-
dividual authors have found rules-of-thumb relating the number of training
examples to the number of free parameters to be trained (Bourlard and Mor-
gan 1993:p.234). In practice, for a specific problem, trial-and-error is often
used. Methods whereby the network is grown or pruned to the right size
have also been developed.
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An alternative is to use a network known to be at least large enough for the
problem, but to prevent over-training within that network. Possible tech-
niques include weight decay and adding noise to weights, but the method
used here is early-stopping which can be implemented without changing the
training procedure and has the advantage of limiting training according to the
same performance criterion (word error rate) as will ultimately be used for
testing the network. If a network is trained on a dataset, it is found that,
during training, the error rate when tested on an independent validation set
will fall as a solution is learnt, and then begin to rise as generalization is im-
paired by over-training. If training is stopped at the minimum of the valida-
tion error, optimum recognition on an independent test set will be obtained.
This method has been widely used in the neural-network community, and is
particularly appropriate for large dataset tasks. Bourlard and Morgan (1993)
have used a similar method for large-vocabulary speech recognition.

To determine the best time to stop training, the training set is partitioned
into separate training and validation sets. After training the network for a
short time, the network’s performance is tested on the validation set. This
train and validate cycle is repeated every epoch until the error rate on the
validation set starts to increase, indicating that the network is starting to
become over-trained. The stopping criterion is a heuristic based on the ob-
servation of validation word error rate over time. The criterion used here is
to stop when the validation error rate is above the minimum observed during
training for more than twelve epochs, or the same without a decrease in the
mean relative entropy. After finishing training, the network with the lowest
error rate is reloaded, and tested on the training set which consists of data
not previously presented to the network.

Number Error rate (%) Epochs | Time per
of units | Fixed target | Retraining epoch (s)

0 49.0 40.9 75 1230

2 41.1 34.0 171 1250

4 29.3 26.2 141 1250

10 23.1 22.3 133 1280

20 21.6 19.1 132 1270

40 21.4 16.3 181 1450

80 16.9 15.6 132 2100

160 14.8 12.2 115 4900

320 13.5 9.6 116 14000

Table 7.1: Error rates for networks with different numbers of
feedback units.

Table 7.1 and figure 7.3 show the error rates for units with different num-
bers of hidden units. Results are quoted before and after re-training with
re-estimated targets, a process explained in section 8.3. Performance can
be seen to improve steadily as the number of units increases. Thus it can

Off-line handwriting recognition 63



CHAPTER 7. RECOGNITION METHODS

)
35 — Fixed targets e 1047
. (&}
-- Re-estimates 0
30 %D
5L —
@ 257 s
Jr_“) N
=20 5
= @]
I 2
= 15¢ [3)
H o
10} &
)
5/ E B
= o3
0 : : : : : : 10 : :
0 50 100 150 200 250 300 103 104 105

Number of feedback units Number of weights (log scale)

Figure 7.3: Test error rates against Figure 7.4: Approximate average
number of feedback units, showing training time against number of net-
error bars (one standard deviation). work weights (log-log scale).

The lower curve shows the error af-

ter retraining with the Baum-Welch

re-alignment.

be seen that early stopping ensures that generalization does not suffer when
the network size is increased. In fact the increased capacity of more feedback
units allows the network to perform better. Because of the increased train-
ing time associated with larger networks, no network above 320 feedback
units has been trained, though it is likely that the recognition rate would be
still higher. The time estimates are seen to come from a constant term (be-
cause of overheads and of cross-validation testing) plus a term proportional
to the number of weights (proportional to the square of the number of feed-
back units), which becomes significant only with 40 or more feedback units
(figure 7.4).

It will be seen from the high values for the standard errors of the mean
error rates quoted that the final solutions obtained are dependent on the
initial conditions (the random weights given to the network prior to training).
It can easily be seen that there are many global minima (any permutation of
the feedback units gives an identical solution) and it is not surprising that a
different solution is found each time, the local minima found in weight space
corresponding to networks giving different performances. This is a problem
that might be solved with more data or by better training, for instance by
finding a better training schedule.

In summary, while a satisfactory method of training has been found, which
reaches good solutions, there is scope for speed improvement. This scope
exists both in finding better training schedules within the space of solutions
tried already, and in trying more complex update techniques. The ensemble
of training methods currently used resembles those arrived at by Bourlard
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and Morgan (1993) and Robinson (1994), but differs in a number of details.

7.1.4 Understanding the network

One of the great problems with neural networks in general, and recurrent
networks in particular, has been the lack of understanding of how the net-
works operate. It is not always well understood to which problems they are
best suited, or how best to use them on problems to which they are appro-
priate. Neural networks have been studied in greater depth in recent years,
though the high dimensionality of interesting problems makes analysis dif-
ficult. While ‘gradient descent on the error surface’ is often talked about,
it is only for a trivial neural network with two weights that this surface can
be plotted, and for higher dimensions it becomes difficult to calculate, let
alone visualize. Recurrent networks are harder still to understand, since the
dimensionality is much higher — outputs are dependent on the inputs, not
only of the current frame (and for the handwriting recognition networks dis-
cussed here, there are about 80 inputs), but also of all the preceding frames.

Robinson (1989) and Pearlmutter (1990) have previously studied the op-
eration of recurrent networks under certain conditions. In order to discover
how the recurrent network is operating in this task, a graphical interface to
the network has been constructed, enabling inputs, activations and weights
to be examined. The remainder of this section discusses some of the under-
standing that has been reached as to the internal representation of data in
the network.

A first experiment to demonstrate the network’s operation is to pass a
single word through the net and to observe the outputs. Figure 7.8 shows
an example of the word ‘forduncle being presented to the network. The
horizontal traces show the activations of the output units against time. Since
the outputs of the network are constrained by the softmax function to sum
to one, most of the outputs are seen to be always close to zero, with only one
or two rising to a significant value at any time. The activities during the first
two frames (before the first vertical line) are always ignored in the training
and testing of the network because of the input/output latency. Subsequent
frames see the probabilities for ‘f’, ‘o’, ‘r’ and so on increasing, with a small
amount of activity in other letters. Note that the valley between the ‘.’
and 7’ is confused with a ‘v’, and that the 4~ is partially confused with an
‘1’, but these confusions are eliminated by the duration modelling (discussed
in chapter 8.2) and the requirement that the word should be in the lexicon.
The vertical lines represent the letter boundaries of the forced alignment
(section 8.3) from the Viterbi decoder.

Consider now the weights within the network. Initially networks were
randomly initialized with weights of zero mean and small variance. However,
after training, all the weights from any feedback unit to the same unit for the
next time-step were found to be positive, with strong connections. (For a
typical network they have mean 2.6 and standard deviation 0.6.) Connections
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Figure 7.8: The system recognizing the word ‘fordunale. The
activations of the output units are plotted against the num-
ber of frames processed. Class boundaries found by Viterbi
forced alignment are shown with the associated class labels (sec-
tion 8.3).

to other feedback units vary greatly, with a slightly negative mean (e.g. mean
-0.4, standard deviation 1.2). This indicates that the network is learning
the intuitive mechanism of having the feedback units preserve their state,
except wheninfluenced by inputs and other feedback units. Since the network
solutions seem to favour this state-preservation, better solutions might be
found more quickly by choosing an initial weight distribution which preserves
state. This can be calculated as follows.

If the feedback units are assumed to have a mean activation a; = 0.5 (cor-
responding to a weighted sum of inputs o; = 0, since the sigmoid activation
function, for which f(0) = 0.5, is used for the feedback units), then

o; =b; + Zajwij ~ b; 4+ 0.5w;;
j
if the other weights have a zero mean. For steady-state conditions, o; = 0,
so b; = —0.5w;;. Now, for an activation a; = 0.5 + da;,
o; = b; + a;wi;.
Since a; = f(o;), for small §a;:
Sa; = fla;) — 0.5 & daw; f'(0).

For the sigmoid, f/(0) = 0.25 so the state is stable when w;; = 4,b; = —2.
Priming the network connections to these values gives faster training and
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a greater recognition accuracy after training. The final values of these links
are much higher (mean 4.6, standard deviation 0.5), revealing that priming
the network weights puts the network into useful areas of weight space that
were not explored while training un-primed networks. It also confirms the
usefulness of feedback connections which preserve the feedback units’ state.

Examining other connections within the network, it is seen that very few
weights from input to output units are positive. This is to be expected, since
a single frame of input is itself ambiguous and does not give a strong indica-
tion as to the character of the frame two time-steps previously (which direct
links would indicate, since outputs refer to the frames input two time-steps
previously). One notable exception to this is the letter ‘g’ which has strong
links from the units representing lines in the lowest part of a word. This is
because 4’ is written with a descender to the right of (delayed with respect
to) the body of the letter. Figure 7.9a shows the links from one input unit in
the lowest part of the word. All the letters with descenders to the right are
activated by this input unit, while other outputs are inhibited. Because some
information is transferred by the direct input-to-output connections, it has
been found that a network with these connections performs better than one
which does not.

In a recurrent network, the most important aspect to understand is the
feedback units. In this handwriting problem, they need to represent the
features presented at the input during the last few time-steps so that a clas-
sification of the current frame can be made according to the context, since
an individual frame is ambiguous. However, the way this information is en-
coded is not readily apparent. As was noted earlier, each unit has a strong
feedback connection to itself to maintain the state over time. Otherwise, few
links from the feedback units are found to be strongly positive.

If a network with very few units is examined, it is easier to understand
the role of the feedback units. Figure 7.9 b,c shows the connections from the
only two feedback units in a small network to the outputs. It is noticeable
that the connections reflect the frequencies of the letters in the training set.
Very rare letters such as ‘q’ and ‘z’ have very strong negative connections.
Because of their rarity, these letters generate very little error signal, so it is
inappropriate for the scarce resources to be used modelling these letters. On
the other hand, the letters ‘edlrst’ have positive connections from the feed-
back units since these are common. The two most common letters (‘et’) are
modelled by both feedback units. Figure 7.10 shows the output probabilities
for the word mwfbjmg which shows the effect of this. The letters ‘se’ are
well-defined, though not as clearly as with the 80 unit network (figure 7.8).
There are noticeable peaks in the output traces of these two letters, but the
other letters show no marked deviation from zero. It can also be seen that
through the direct input-output connections, the descender is identified as
belonging to either a 4’ or a %’, though the network does not have the mod-
elling capacity to distinguish the two. Despite the uncertainty of the network
during most of the frames, the correct word is still chosen from the lexicon.
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Figure 7.9: Connection strengths to the outputs in a recurrent
network. Circles are white for positive weights, black for neg-
ative. Larger magnitudes are represented by larger radii. (a)
shows the connections from a descender input unit in a 60-unit
network. (b) and (c) are the connections from the only two feed-
back units in a small network.

Off-line handwriting recognition

69



CHAPTER 7. RECOGNITION METHODS

PoHWKE LS TOoTOI2 =I5 =T HD o0 T W

Figure 7.10: The two unit network recognizing the word ‘mw/é—
. No class boundaries are shown because the 2-unit net-
work re-estimates are inaccurate.

The role of the feedback units can also be verified by examining their ac-
tivations when presented with word data. The units are generally seen to
have high activations when the relevant letters are present at the input, and
low otherwise, though the correlation is far from perfect. In figure 7.10 the
activation of feedback unit zero is high during the 4’ and ', though unit 1
does not go high during the ‘2’ as might be expected. The biases to the output
units are found to reflect the variation in class frequencies, but this correla-
tion is not as strong as suggested by the experience of Bourlard and Morgan
(1993:p.127). Examining a network with four units, one of the feedback units
is found to have negative connections to all the outputs except ‘i’, and to re-
ceive strong positive input from the input unit representing the dot feature.
This representation allows the network to remember the presence of an i dot
during the latency period.

Another way of investigating the network’s behaviour under controlled
conditions is to feed a null input into the network. A data file where all
frames are entirely zero is constructed, and presented to a trained network.
The unforced output for a sample network with 60 feedback units is shown
in figure 7.11. 1t can be seen that the output and feedback units go through
several cycles before reaching a steady state with all the units in saturation.
Examining a network with but one hidden unit shows that the network dy-
namics are, understandably, simpler. The outputs are all monotonic, and
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Figure 7.11: The network outputs for unforced inputs.
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reach a steady state after a few frames. As networks with more and more
feedback units are tested, the behaviour hecomes more complex, until with
a 160-unit network, no steady state is achieved after 130 frames. The net-
work appears to be entering limit cycles, exhibiting dynamic behaviour with
no active inputs.

7.2 Time-delay neural networks
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Figure 7.12: A schematic of the time delay neural network,
showing a single hidden layer.

Time-delay neural networks (TDNNs) are a method of applying a simple
forward-propagation neural network to a sequence of frames of data to arrive
at a sequence of probability estimates. A TDNN is represented in figure 7.12.
A layer of perceptrons, as used in the recurrent network, takes a small group
of input frames (three in the diagram) and calculates the activations of a cor-
responding hidden frame with equations 7.1 and 7.2. The receptive field of
the perceptrons is then shifted to the right, and another hidden frame calcu-
lated. This process can be repeated for all the frames. At the same time, a
second layer of perceptron units takes a group of hidden frames and for each
of these calculates an output probability distribution with softmax units, just
as for the recurrent network. Thus, for each input frame a corresponding out-
put distribution is calculated. Since the same perceptrons operate on each
section of the input, the TDNN is good at position-invariant pattern recog-
nition. It has a fixed window of context which is the number of input frames
on which each output depends. The length of this window (five frames in
the diagram) is determined by the receptive fields of the perceptrons. This
makes the TDNN good for recognition of patterns with limited context, when
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the extent of this context is known, but longer-term dependencies can not be
learnt. Because of the rigid hierarchy of the input and hidden units, de-
pendencies of variable length are hard to learn. Each perceptron can only
associate features which are a fixed distance apart. The recurrent network,
on the other hand, stores all context in the hidden units which are available
at every time step. If the context is of variable length, the feedback units will
vary slowly and the correlation between two features can be detected at an
arbitrary delay.

It is believed to be for this reason that TDNNs did not perform well on
this handwriting recognition task. They were also found to be unwieldy since
the architecture of a TDNN is specified by a large number of parameters. The
number of hidden layers must be specified, as well as the number of units
in each and the size of each receptive field. A further parameter that can
be controlled is the number of frames shifted between successive operations
of each of the sets of perceptrons. Finding a good set of values for all these
parameters requires a long search, whereas the recurrent network has a single
such parameter — the number of feedback units (section 7.1.3). Because of
this poor initial performance, TDNNs were not investigated further, and no
results are presented for them here.

7.3 Discrete probability estimation

This section describes the third technique investigated for probability esti-
mation. This involves computing a number of integer-valued indices from
each frame and using these to look up probability values in pre-computed
tables. When combined with the hidden Markov models (HMMs) described
in the next chapter, the system is a conventional discrete HMM since this is
the usual method of calculating probabilities for a discrete HMM. By con-
trast, the recurrent network and HMM together would be termed a hybrid
system.

The probabilities that must be estimated are the likelihoods P(x;|A;) —the
probability of a frame of data being generated, given the identity of the letter.
Since the data are represented as about 80 features, each coded as a byte
(256 possible values), to store the probability of each possible co-occurrence
would require 256%° x 26 probabilities to be stored and estimated. This is
clearly computationally impractical and would require infeasible quantities
of data to give estimates of the probabilities. Parametric distributions could
be used, which calculate these probabilities as functions of a smaller number
of parameters, but the numbers are still impractical, and the re-estimation
more difficult. Two methods are used to simplify the estimation.
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7.3.1 A simple system

First, since the units mostly record simply the presence or absence of a fea-
ture, even for the skeleton where the coarse coding does give values between
0 and 1, the most important information is whether a line segment is present
or not. The inputs are thus re-quantized to be binary-valued (or some other
number of values much less than 256). Secondly, the features are assumed to
be independent. Thus the probability of the co-occurrence of all the features
in a frame is simply the product of the occurrence of the individual features.

P(xiAi) &~ T P((x);1A0) (7.4)

Now only 80 x 2 x 26 probabilities need to be stored or, since the pairs must
sum to one, only 80 x 26.

The assumption of independence in the occurrence of features in the input
is clearly inaccurate since, for example, the occurrence of a vertical stroke in
one box is highly correlated with the occurrence of a vertical stroke in the box
below. In practice, the assumption is far too strong, and the performance
of the HMM system is much worse than that of the recurrent network (an
error rate greater than 50%). The following section describes a system which
obviates the independence assumption, and gives better recognition results.

7.3.2 Vector quantization

Vector quantization (VQ) is a method of characterizing each frame by a single
number, or code ¢(x;). The quantization process is designed so that similar
frames are all coded as the same number. Then, instead of estimating the
probability of all the features in a frame given the character class, it is only
the probability of the code given the character class that must be estimated:
P(x|A\;) = P(c(x)|A;).

In vector quantization, each frame is considered as a vector in a metric
space with as many dimensions as there are elements in the frame. Quanti-
zation determines a codebook of code vectors c; in this space. Each frame x;
is then coded according to the nearest code vector: ¢(x;) = argmin; ||c; — x||*.
In the subsequent training, it is these codes that are the features, and it is
the probability of a code being part of a given letter that must be estimated.

Before being able to estimate the probabilities, the code vectors must be
determined. To be representative, they must be well distributed in the space
of vectors actually produced by the preprocessing system, and each should
represent a typical group of vectors which can be considered to be similar.
The groups of equivalent vectors are assumed to be those close to one an-
other in the metric space, and the code vectors are determined by a clustering
algorithm which finds these clusters in the training vectors. Each code vector
is then the centroid of a cluster of training vectors. A number of algorithms
exist for carrying out this clustering, and a number are reviewed by Gray
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(1984). The method used here is by Linde et al. (1980). It produces a set of
coding vectors given a training set of vectors output by the preprocessor —
the same training set which, when coded by the quantizer is used to estimate
the code probabilities which are stored in the tables. In brief, the algorithm
works in the following manner:

1. Seed the quantizer with one classification vector — the centroid of the
training set.

2. Split each classification vector to give two, perturbing each slightly. This
has the effect of dividing the original cluster with a hyperplane perpen-
dicularly bisecting the line joining the two new centres. If the perturba-
tion is sufficiently small, the other class allocations will be unaffected.
Perturbation along the line joining the centroid to the origin was found
to work just as quickly as perturbation along the axis with the greatest
in-cluster variance.

3. Classify each of the training vectors by assigning it to the nearest clas-
sification vector.

4. Move each classification vector to the centroid of the training vectors
which were nearest to it.

5. Go to step 3 unless the classifications are the same as in the last itera-
tion.

6. Go to step 2 until the desired number of classification vectors is ob-
tained.

For step 3, a distance metric must be specified. As a first approximation
the Euclidean distance was used. This is reasonable since all the inputs are
constrained to fall in the same [0,1] interval. This distance will reduce to
the Hamming distance when all the vectors are binary valued. An alterna-
tive which has also been tested is the Mahalanobis distance (already seen in
chapter 6), where the distance between two points x and y is given by:

x=yl* = (x=y)'E"(x—y). (7.5)

where ¥ is the covariance matrix of the training vectors.

The Mahalanobis distance is derived from the assumption that the distri-
bution of vectors is elliptically Gaussian, which is clearly not true here. Nev-
ertheless, it allows correlations between vector elements to be taken into
account when finding the distance between two vectors. A better metric,
based on knowledge of the origin of the data and the fact that the data are
largely binary-valued could probably be found. This would model the cor-
relations between features better and result in more representative clusters.
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Better results might be obtained from quantizing with such clusters. How-
ever, hand-crafting a metric would be a complex procedure, and the Maha-
lanobis metric is the most complex metric investigated here.

A furtherissue in designing a VQ-HMM system, is the optimum number of
clusters to choose. This involves striking a balance between an over-trained
system which does not generalize well and one which has a low discriminative
power. Results are given for a variety of numbers of clusters and the optimum
value chosen.

7.3.3 Training

Discrete probability estimation requires the tables of probabilities to be filled
with the estimate of P(¢;|A;) for each of the codes ¢; and letters A;. After
vector quantizing the corpus and labelling each frame with the automatic
segmentation procedure, the number of times code ¢; is part of letter A; is
counted over the whole training corpus. Dividing by the number of frames
representing A; gives an estimate of the emission probabilities P(¢;|A;). By
re-aligning with the Baum-Welch procedure of chapter 8, the probabilities
can be re-estimated and the recognition rate improved slightly. For this
HMM framework, the Baum-Welch procedure is very fast, since the maxi-
mization step of the Expectation-Maximization algorithm, of which this is an
example, consists only of taking the frequency counts rather than doing gradi-
ent descent as with the recurrent networks — a notoriously time-consuming
problem.

Recognition rates for the HMM system with Euclidean and Mahalanobis
distances are shown in tables 7.2, 7.4 and 7.3. The numbers of clusters are
powers of two in the first table, since at each iteration of the splitting algo-
rithm the number of clusters is doubled. In the other tables, the number of
clusters is lower because during the splitting some clusters have been found
to be empty and the corresponding centroids discarded.

Clusters | Error rate (%) Clusters | Error rate (%)
256 24.1 256 25.9
512 20.6 509 22.0
1024 22.9 1006 21.0
2048 28.1 1979 23.9
4096 93.5 3796 40.6

Table 7.2: Error rates for the hid- Table 7.3: Error rates for the hidden

den Markov model system with Eu- Markov model system using diago-

clidean distance vector quantization. nal covariance Mahalanobis distance
vector quantization.
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Clusters | Error rate (%)
254 26.6
505 24.5
1001 22.4

Table 7.4: Error rates for the hidden Markov model system us-
ing Mahalanobis distance vector quantization.

From tables 7.2 and 7.3 it can be seen that increasing the number of clus-
ters up to 512 increases the discriminative performance of the system, so the
error rate falls. Beyond this, the generalization fails and performance falls
off rapidly. By 4000 clusters the system fails completely. The diagonal Ma-
halanobis distance method gives slightly, but not significantly worse results,
and the full-covariance Mahalanobis distance gives worse results again. The
full-covariance matrix codebook is prohibitively expensive, computationally,
to work out for larger numbers of centroids. The lack of improvement is due
to the unusual distribution of the inputs which are nearly always zero, and
often one. The Mahalanobis distance is intended for modelling distributions
which are Gaussian distributed, an assumption not true here.

7.3.4 Discussion

The best of these discrete probability estimators has 512 x 26 parameters —
the same as a recurrent network with 64 feedback units. A network with
60 feedback units achieves a 14.5% error rate. It can thus be seen that the
pure HMM system does not perform as well as the hybrid recurrent net-
work/HMM system. While this shows that the recurrent network is a more
practical solution to the problem of modelling the graphic data, it does not
argue absolutely against the use of hidden Markov models. While much of
the work of this thesis is equally applicable to both systems, more time has
been spent perfecting the recurrent network system than investigating im-
provements in the pure HMM approach. It is undoubtedly true that with
further investigation the HMM system could be improved. There is a set of
standard techniques that could be taken from speech HMMs and applied to
this system, which could reasonably be expected to give better performance.
These include giving different states within a letter separate probability dis-
tributions, and producing context-dependent models which would be able
to model the coarticulation between adjacent letters — most particularly
the ligatures which vary with different contexts. However, similar methods
might also be applied to the hybrid system.
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7.4 Summary

This chapter has presented three methods of probability estimation which
can be used for the problem of off-line handwriting recognition, and has dis-
cussed some of the issues involved in using them. The training of the models
has also been discussed and recognition results presented. The recurrent net-
works were found to perform better than both the discrete hidden Markov
model and the time delay neural network. Training the recurrent networks
is very time-consuming, but a number of methods have been used which re-
duce the training time, including weight initialization, Jacobs’ weight-update
scheme, and a training schedule which changes the size of weight-update
batches during training.

The next chapter completes the description of the system by explaining
how the probability estimates are used for word recognition.
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Chapter 8
Hidden Markov modelling

The reading is right which requires so many words to prove it wrong.
Samuel Johnson.

The previous chapter described methods of modelling the graphical data of a
handwritten word. Each method gave an estimate of the likelihood P(x;|A;)
for each frame of input x; and for each character class A; (of 26). This chapter
deals with the process of deriving the best word choice from a sequence of
these frame probability distributions by the use of hidden Markov models.
The methods described here apply equally to the pure discrete HMM and to
the recurrent network hybrid system, but tests are described for the hybrid
system since it was found to be more effective. For the time being, the system
is assumed to have a known vocabulary and it is assumed that any word
presented to it will be in that vocabulary.

8.1 A basic hidden Markov model

Because the data are noisy or ambiguous, the output of the whole system
should be a probability distribution across the words in the lexicon, being
the probability for any word that it was the one originally written. Nor-
mally the probability should be close to one for one word, and close to zero
for the others, but where there is ambiguity, error or poor data, the dis-
tribution might be more uniform. For instance, for the ambiguous word of
figure 3.1b, high, roughly equal probabilities would be expected for the three
words ‘clump’, ‘jump’ and ‘dump’, with a lower probability for ‘1ump’ and small
probabilities for other words. The probability distribution to be determined
is P(W|xj) across all words W in the lexicon £, given the input data xJ.

The individual frame probabilities are combined to produce word prob-
abilities using a hidden Markov model (HMM). A good tutorial article on
HMMs is that of Rabiner and Juang (1986). A separate HMM is created
for each word in the known lexicon, with one state representing each let-
ter. Figure 8.1 shows a model for the word ‘one’. If there are N states,
the set of statesis Q@ = {¢, : » = 0,..., N — 1}, corresponding to the letters
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\’ one )

ac(t)  aolt) aon(t) Cone(t)
Figure 8.1: A simple Markov model for the word ‘one’ with one
state per letter.

L(¢-). The Markov model represents a process by which the writing could
have been generated. Each circle in the diagram represents a state of the
model. At time ¢ = 0 the model is in state ¢y, corresponding to the be-
ginning of the word. At each time step ¢t = 0,...,7, a state transition is
made, following one of the arrows in the diagram. This means that either
the next state is entered, or a self-transition is made and the state at the
subsequent time step is the same as the current state. The state at time
t is written S;. In general a hidden Markov model can allow transitions
between any pair of states, but in handwriting, the order of the letters is
known and no letters can be missed out, so the model is made more re-
strictive. To use the model, transition probabilities are assigned to each of
the permitted transitions and are assumed to be independent of the time:
apr = P(Siy1 = ¢S = ¢,), a,, = 0 except whenr = porr = p+ 1. For
the model to be a true Markov model, all the transition probabilities are
dependent solely on the current state. By this process, a state sequence
S = (So,...,S5;) is arrived at, which records the state at each time step. A
typical state sequence might be 5 = (o, g 90, 90, 91 41, 1, 92: G2, G2, G2, ¢2) €COT-
responding to the letter sequence L(S) = (0,0,0,0,n,n,n,e,e,e,e,e). The
model is a hidden Markov model because S is not directly observable, only
inferred. It is only the frames of data that are observed.

In the generation process which is to be modelled, the system produces a
frame of graphic data x; at each time step. The data are part of the graphic
representation of the letter signified by the current state. The data are as-
sumed to occur according to a probability distribution P(x|L(S;)), which is
estimated by the recognition system of chapter 7. With this information an
expression can be derived for the probability of a word, given a particular
observation sequence x;.

The posterior probability of a word W can be rewritten using Bayes’ rule:

Pig[W)P(W)
P(xg)

where P(1V) is the prior probability of the word occurring, which is discussed

in section 8.4.2. The probability P(x]) of the data occurring is unknown, but

assuming that the word is in the lexicon £, the probabilities must sum to one,
and can be normalized:

S P(Wlkg) = 1 (8.2)

wecl

P(W|xD) (8.1)
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Plg|W)P(W)
Zwee PGIW)P(W)

There are many state sequences representing any given word. Writing

P(W|x5) (8.3)

S(W) = {S, such that S represents W}, (8.4)
then
PIW) = 3 PGI9HP(S), (8.5)
SeS(W)

where the state sequence probability P(S5) is the product of the initial distri-
bution, 7, = P(Sy = ¢.), and the subsequent transition probabilities:

T—1

P(S) = 7TSO H a5t75t+1. (86)

t=0

Here 7, = 0 for all states except the first (mq = 1), so the model is constrained
to start with the first letter. Now, by Bayes’ rule

P(xlS) = Plxol5)P (XI|5 Xo) (8.7)
= P(x0]95) HP (x¢| S, x571). (8.8)

=1

If it is assumed that the emission probability is dependent solely on the
class that the current state represents, this reduces to:

T

P(xlS) =TI POxIL(50), (8.9)
t=0
which involves the terms P(x;|L(S:)) stored in the tables of chapter 7. A
weaker assumption is that the emission probability is conditionally inde-
pendent of preceding or following states, given the current state:

P(xls) = ﬁ Plxe|Sh.x (8.10)

T

= H (x¢|L(S:), x5™) (8.11)

where, by further applications of Bayes’ rule, it can be seen that:

sy - PUSIOP) e

Now P(L(S;)|x}) is exactly the posterior probability estimated by the recur-
rent network. P(x)) is the probability of the first few frames of data, which
is the same for all words. P(L(S:),xi") is assumed to be proportional to
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P(L(S:)), the prior probability of a frame belonging to the class L(S;). This
assumption is clearly incorrect, but is found to work in practice. This prob-
ahility can be estimated by counting the number of frames in each class ac-
cording to the labels of the training set.

Thus there are two expressions for the likelihood L(W|x]) of a word, which
can be normalized to give word probabilities:

P(Wx5) 55&?%%5?%%3 (8.13)
LW ~ P(W) z(j )(ljoP(xt|L(St))) (mo:lj)ashst“) (8.14)

LWpG) ~ PW) Y (H %’;{'ﬁ)) (wsoﬁast,sm). (8.15)

SGS(W) t=0 t=0

Equation 8.14 is used for the table look-up system and equation 8.15 is used
for the recurrent network. For simplicity, the likelihoods P(x;|L(5;)) are used

henceforth, but the scaled likelihoods P - Lft)l)x)o) are to be understood when

the equations are applied to the recurrent network system.

These expressions can be calculated efficiently using the principle of Dy-
namic programming, in an array structure representing the states of the Mar-
kov model. In this model, each state is accorded a probability «.(¢), which
is the probability of being in state r after ¢ frames have been observed.Thus
a,(0) = m, the initial distribution.

As successive frames of data are fed into the recognizer, and character
probabilities are generated, the Markov model forward probabilities are cal-
culated recursively by the formula:

Ht+1) Zozp P(x¢|L(gp))apr (8.16)

until all have been processed. At this point the final state (dashed in fig-
ure 8.1) contains P(xj|W) = a,(7 + 1), the likelihood that the data x] repre-
sented the word of this model. By choosing the maximum of the likelihoods,
argmaxy, L(Wx]), if the models are good, a good estimate of the identity of
the original word is obtained.

All of these probabilities are stored and multiplied in the log domain for
speed and numerical accuracy. Multiplications become additions in the log
domain. Probability additions can be calculated by using the identity

log(a +b) = loga+ log(l + exp(logb—loga)), (8.17)

and deriving the second term from a look-up table, as described by Brown
(1987).
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8.1.1 Labelling

It will be recalled from chapter 4 that the database consists of both upper and
lower case letters as well as punctuation. In fact the punctuation is excluded
in the segmentation process, so only word images are passed to the prepro-
cessing system, and no recognition of punctuation is carried out. If this were
desired, a separate system for recognizing punctuation marks would be nec-
essary. As punctuation marks appear in isolation and are largely defined by
location, the recurrent network apparatus would be inappropriate. A much
simpler system could be used, perhaps based on rules for the location and
contour shape of punctuation marks.

The system described here gives a distribution across the 26 letter cate-
gories, and makes no distinction between upper and lower case letters. An
‘a’ and an ‘A’ are both labelled the same, and the network is trained to give
the same output for either. There are not enough examples of capital letters
in the database to train a network with separate output classes for both up-
per and lower case letters, since capitals only occur at the beginning of a few
words and in a few acronyms. Indeed, the current system recognizes capital
letters poorly, but since they are generally only initial letters, recognition is
still possible based on the remaining letters and the constraints of the lim-
ited vocabulary. Testing a 160-unit network with a grammar gave an 8.8%
error rate, but among words with capitals the error rate was 35%. The aver-
age rank in the lexicon of incorrectly recognized words with capitals was 96,
compared to 15 for incorrect words without capitals. More data with capital
letters would improve the recognition rate on capital letters, bringing down
the overall error rate.

If more data were available, and distinction between upper and lower
case were required, the network could be given 52 outputs to represent the
upper and lower case letters. However, it might be better (because the net-
work size would be kept down) to keep just 26 output categories, and have
a separate unit indicating the case of the letter. Such a unit would give an
independent probability, with a sigmoid output (equivalent to the two-class
softmax). When using such a system, the hidden Markov models would need
to be adapted to account for the separate classes and, according to the task,
models with initial capitals, full capitals or even mixed case words could be
permitted.

Some systems (Schenkel et al. 1994) have a ‘noise’ output class to allow
the network to indicate that the inputs do not correspond to any of the letter
classes. Such a class could be used in this system to represent poor writing
or the ligatures between letters, but the implementation would be difficult
since there is no noise or ligature class in the labelling of the training data.
Since the system accepts cursive and discrete writing, the data would need to
be hand-labelled to indicate the presence of ligatures. 1f such hand-labelling
were done, then an optional ligature model could be inserted between the
letter models of each word. A noise model could be placed in parallel with
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the letter models to allow letters to be skipped when there was something
illegible in the input. Since few frames contain only ligatures, and the data
used here were clean, these ideas were not implemented.

8.1.2 Decoding

In practice, most of the state sequences S are highly improbable, and se-
quences such as L(S) = (0,0,0,0,0,0,0,0,0,0,n,e) are going to contribute
little to the probability of the word. In fact, in most cases, it can be said that
there will be a small number of similar state sequences which are much more
likely than all the others. Also, the single most likely sequence, 5*, will be
similar to all of these, and can be considered to be representative. Thus, a
good approximation to equation 8.5 is:

P(IW) < P(x5|S*)P(SY). (8.18)

Carrying out decoding on only the most likely state sequence is called
Viterbi decoding. In this case, the decoding is simpler. A different set of
likelihoods, <o/, is stored:

al(t+1) = mﬁxa;(t)P(xJL(qp))ap’r. (8.19)

These likelihoods can be computed more quickly than the full probabilities,
«, and are found to give better results for this handwriting recognition system
(T'(2) =9.72,t 99(2) = 6.96). Comparative results are given in table 8.1.

Decoding | Error rate (%) | Decoding time
method {1 o per word (s)
Viterbi 17.0 | 0.68 1.32

Full 20.4 | 0.82 1.65

Table 8.1: A comparison of error rates and decoding times for
five 80-unit networks trained on Viterbi segmentations, and
tested with Viterbi or full decoding.

8.2 Duration modelling

This section investigates how the transition probabilities «, . in equation 8.6
can be chosen so that words are modelled as well as possible, and to give opti-
mum recognition performance. As a first approximation, it could be said that
all state sequences are equally likely, and so all the transition probabilities
could be made identical (a,, = a,,4+1 = 5 ¥p). Since a fixed number of frames
is being decoded, any state sequence would have probability P(S5) = (%)(T“).
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In this case the state sequence probability has no effect on the recognition,
and the word probabilities depend entirely on the observed data, taking no
account of whether the state sequence is reasonable for the word.

Practically, though, a number of improvements can be made to the tran-
sition probabilities to make the Markov models model the true durations
of letters much better. Hochberg (1992) has used similar techniques for the
modelling of HMM state durationsin speech recognition. In the simple, one-
state-per-letter model of figure 8.1, the transition probabilities for dwelling
in a given state or exiting to the next state in a word (p and ¢ = 1 — p respec-
tively) can be adjusted. The obvious choice is to arrange for the expected
duration of the model to be equal to the mean observed duration of a letter:
q = 1/d.,. In fact, in such a simple model, this will merely tend to favour
long or short words depending on whether p > ¢ or not, because for a word
of X letters, P(S) = p"*Y(2)*. Adjusting the mean length of each model in-
dividually gives improved modelling, but to start to obtain accurate models
of the lengths of letters, the duration distribution needs to be examined.

The duration distribution specifies the probabilities P(n) Vn > 0 of re-
maining in the state for » frames. The duration distribution of the simple
model of figure 8.1 is geometric, as in the solid line of figure 8.2.

P(n) = p''q (8.20)

This does not match the duration distributions found in practice (shown in the
dotted line of the figure). Better performance (ultimately in terms of reduced
error rates) is to be expected if P(5) can be modelled more accurately.

8.2.1 Enforcing a minimum duration

It is found that poor modelling often results from passing through a model in
a single time step, when the data match the current model very badly, though
a single letter is very rarely contained in a single frame of data. Although the
probability of such a short duration will be very low, this can be outweighed
by the increase in the data probability. To avoid this problem, a minimum
duration d,,;, > 1 is enforced. This forces P(n) = 0 for n < duin.

Several methods have been used to choose the minimum duration of a
letter model. The first is to choose d,.,;, to be the smallest duration observed
in the training set, but this is subject to noise, particularly since the durations
are determined automatically. A better method seems to be to choose d,,;, =
dav/2, though other similar methods work just as well.

The simplest method of implementing a minimum duration is to repeat
each of the states in a given model, as shown in figure 8.3. The graphic data
probabilities are the same for all the states in each class (i.e. the emission
probabilities are tied). The operations for calculating the likelihoods o are
exactly the same, but there are twice as many. When Viterbi decoding, this
results in a minimum duration d,,;,, longer durations having probabilities
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0.3 - - 2 states, Viterbi
0.25 - -2 states, full
,,? Observed
= 0.2
a)
3
S 0.15
[ =
o
0.1r
0.05¢
o ‘ ‘ ‘ ‘ =
0 2 4 6 8 10 12

Duration (frames)
Figure 8.2: Probability distributions for the simple Markov

models, compared with observed ‘' durations.
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Figure 8.3: A Markov model for the word ‘one’ with two states
per letter.

given by the geometric distribution. The probability of remaining in such a
model for » frames is given by:

n—dmin ~dmi
_ p mlnq min n Z dmln
Pin) = { 0 otherwise (8.21)
1
= — 8.22
1 dav - dmin + 1 ( )

where d,, is the average duration of a letter determined from the training
set. In fact these are likelihoods, and the normalized probabilities are

n—dmi
_ p rgon Z dmin
bin) = { 0 otherwise. (8.23)

Robinson (1994), for example, uses geometric distribution models of this
form to enforce minimum phone durations in speech recognition.

When doing full (as opposed to Viterbi) decoding, where multiple paths
are permitted, the distribution given by this model is no longer geometric,
but

_ [ Chop gt 0> don
P(n) = {0 otherwise (524
dmin
e (8.25)
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This distribution is closer to the observed distribution (figure 8.2), but by bet-
ter modelling of the whole of the probability distribution, the performance
can be increased still further.

8.2.2 Parametric distributions

Pywen

Figure 8.4: A complex duration model with m states for one
letter.

More detailed modelling of the duration probability distribution can be ac-
complished with a more complex model, shown in figure 8.4. Here, each
letter is represented by m states. The first m — 1 states correspond to letter
durations of from 1 to m — 1 frames. From each of these states, the only per-
mitted transitions are onto the next state of the same letter or onto the first
state of the next letter. The transitions to the next letter are thus labelled
with the duration probabilities P(rn). The final state has a dwell loop which
gives the distribution a geometric tail. The probability p4w.n is adjusted to
make the exit probabilities sum to one:

o0

m—1
> P(n)+ P(m)Piai = L. (8.26)
n=1 n=m

The remaining transitions are given probability one. While this makes the
sum of the probabilities at any node not equal to one, the sum of the prob-
abilities of transition out of the model is one, so the duration of the model
is described by a probability distribution. In fact, by normalizing appropri-
ately, the same model duration distribution can be maintained while making
the sum of probabilities at each state equal to one, but the form described
here is clearer.

The more states in the model, the more accurately a given probability
distribution can be modelled. With m states the model is perfect up ton = m,
and follows a geometric distribution thereafter. However, the decoding time
is proportional to the number of states, so the length of the model must be
chosen from a trade-off between accuracy and speed. Table 8.2 shows the
effect that model length has on recognition accuracy.

The duration distribution could be made to follow exactly the observed
duration histogram from the training data. Without large quantities of data,
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Figure 8.5: Probability distributions Figure 8.6: The same with a forced
for three duration models, com- minimum duration of 3 frames.
pared with the histogram of ob-

served ‘¢’ durations.

however, these distributions are noisy, so a parametric probability distri-
bution is used which fits the observed histogram well. In this work, three
duration models have been investigated — based on the geometric, Poisson
and gamma distributions. In each of these cases, the parametric distribu-
tion is used to calculate the probability of being in a letter model for a given
number of frames. Each of these distributions can be shifted to impose a
minimum duration d,,;, > 1.

The Poisson distribution
Even for the case d,,;, = 1, the Poisson distribution is shifted, since for the
true Poisson distribution, P(0) # 0.

e_>‘/\"_dmin
n Z dmin

P(n) = (n—dmin)! (827)
0 otherwise
A = day — dumin. (8.28)
Schenkel et al. (1994) have recently used the Poisson distribution for duration

modelling in on-line handwriting.

The gamma distribution

This distribution is parametrized by two parameters n and » which determine
the mean and variance. The values of » and » are set according to the method
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of moments:

H— dmin + 1
e (8.29)
v o= (= dmin+1)%0? (8.30)
n”(n—l—l—dmin)”_15_77("+1—dmin)
> .
P(n) = () 7 2 dmin (8.31)
0 otherwise.

8.2.3 Results

Sample error rates and recognition times are shown in table 8.2. It can be
seen that enforcing a minimum duration of 2 in the geometric model re-
duces the error rate, but further increases impair the performance. Both of
the complex duration models perform better than the geometric distribu-
tion models, and the gamma distribution performs better than the Poisson
(T'(34) = 4.49,1999(34) < 3.14). Modelling longer durations more accurately
by adding states improves the performance but the returns diminish and the
computation time increases. Comparing the 2 and 8 state gamma distribu-
tions shows a significant reduction in error rate (7'(4) = 3.28,¢ g75(4) = 2.78),
but comparing 8 and 12 state gamma distributions does not (7'(4) = 0.16).
The 8 state gamma distribution is used in other experiments throughout this
thesis.

One specific way in which the better modelling is manifested is in dis-
tinguishing between single and double letters. In the geometric model, for
a given set of data, there is no difference between the probabilities for the
models ‘reed’ and ‘red’ for example if the duration of the ‘' is longer than the
minimum duration of the two ‘e’ models. However, with the more complex
duration models, those with double letters will have different probabilities to
those with single letters. In the ‘reed/red’ example, ‘red’ will have a higher
probability than ‘reed’ if the number of frames with high ‘e’ probabilities is
around the mean duration of an ‘¢, lower if there are more than double the
mean.

8.3 Target re-estimation

Having trained the network for some time, it has a good estimate of the
probability of each frame belonging to any letter. Given the correct word,
the best state sequence S* for this word represents a segmentation giving
a new label for each frame. For a network which models the probability
distributions well, this segmentation will be better than the automatic seg-
mentation of section 7.1.2 since it takes the data into account. Finding the
most probable state sequence S* is termed a forced alignment. Since only
the correct word model need be considered, such an alignment is faster than
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Duration | Number | Error rate (%) Recognition
model of states | [ o time per word (s)
Geometric 1 18.2 | 0.97 0.42
Geometric 2 16.6 | 0.92 0.62
Geometric 3 17.1 1.00 0.91
Geometric 4 26.1| 0.79 0.91
Poisson 2 16.5| 0.94 0.55
Poisson 3 16.4 | 0.82 0.83
Poisson 4 16.3| 0.76 0.91
Poisson 6 16.1| 0.82 1.43
Poisson 8 16.2 | 0.86 1.65
Poisson 10 15.9| 0.79 2.14
Poisson 12 15.7 | 0.74 2.49
Gamma 2 16.5| 0.92 0.55
Gamma 3 16.4 | 0.90 0.83
Gamma 4 15.9 | 0.69 0.91
Gamma 6 15.7 | 0.78 1.43
Gamma 8 15.6 | 0.72 1.65
Gamma 10 15.5| 0.77 2.14
Gamma 12 15.5| 0.81 2.49

Table 8.2: Sample performance figures for the different duration
models.

the search through the whole lexicon required for recognition. Training on
this automatic segmentation gives a better recognition rate, but still avoids
the necessity of manually segmenting any of the database.

Figure 8.7 shows three different segmentations of the word ‘&utfer-'. First
(a) shows the segmentation arrived at by taking the most likely state se-
guence when using an 8 state gamma distribution Markov model, but with
an untrained network, so the graphic data has no effect on the segmenta-
tion. This is similar to the ‘equal length’ segmentation used to bootstrap
the system. (b) shows the effect of removing the duration model. There is
now nothing to distinguish between the state sequences, except slight dif-
ferences in the network’s probability estimates due to initial asymmetry, so
a poor segmentation results. After training the network (c), the durations
deviate from the prior assumed durations to match the observed data. This
re-estimated segmentation represents the data more accurately, so gives bet-
ter targets towards which to train.

Having trained one network, the segmentations can be stored with the
data files and used to train new networks, avoiding the less-accurate, equal-
length segmentations and speeding up training. However, after completing
training on these fixed targets, a further small improvement in recognition
accuracy can be obtained by using the targets determined by the new net-
work’s own re-estimation of the segmentation.
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(c)
Figure 8.7: Viterbi segmentations of the word ‘&utfer'. Each
line represents one letter A; and is high for the frames ¢ when
Sr = A;. (b) is a segmentation with an untrained network and
no duration model. (a) shows the effect of adding an eight state
gamma distribution duration model, and is similar to the ‘boot-
strap’ segmentation. (c) is the segmentation re-estimated with
a fully trained network and a duration model. For clarity, the
segments are not labelled in (b).

The effects of this can be seen in the graph of relative entropy against
number of epochs (figure 7.7). After a plateau indicating convergence, train-
ing on the fixed targets is stopped according to the stopping criterion. Train-
ing on the network’s segmentation re-estimation is then begun and a steeper
drop in relative entropy is seen. The relative entropy falls significantly be-
cause the new segmentation is that which is closest (within the constraints
of the duration modelling, and the correct word model) to that indicated by
the network’s output probabilities. Thus the relative entropy of the output
and target distributions will immediately be lower when the new segmenta-
tion is adopted. Thereafter, a new segmentation is calculated at every epoch
and the network adapts its parameters in accordance with this segmentation.
The relative entropy continues to fall. Similar effects can be seen in the graph
of error rate against number of epochs (figure 7.6), but the effect is largely
masked by noise.

Table 8.3 shows word recognition error rates for three 80-unit networks
trained towards fixed targets estimated by another network, and then re-
trained, re-estimating the targets at each iteration. The retraining improves
the recognition performance (7'(2) = 3.91,¢ g5(2) = 2.92).
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Training Error (%)
method [ o
Fixed targets | 21.2 | 1.73
Retraining 17.0 | 0.68

Table 8.3: Error rates for 3 networks with 80 units trained with
fixed alignments, then retrained using individually re-estimated
alignments.

8.3.1 Forward-backward retraining

The system described above performs well, but examining the speech recog-
nition literature, a potential method of improvement can be seen. Viterbi
frame alignments have so far been used to determine targets for training.
These assign one class to each frame, based on the most likely state sequence,
but a better approach might be to allow a distribution across all the classes
indicating which are likely and which are not, avoiding a ‘hard’ classification
at points where a frame may indeed represent more than one class, or none
(as in a ligature). A ‘soft’ classification would give a more accurate portrayal
of the frame identities.

Such a distribution can be calculated with the forward-backward algo-
rithm (Rabiner and Juang 1986). To obtain the distribution ~,(¢) = P(S, =
q,x5, W), the forward probabilities «,(¢) must be combined with the back-
ward probabilities 5,(¢) which represent the probability of observing frames
x;,, when starting in state p at time ¢. The backward probabilities are calcu-
lated similarly to the forward probabilities of equation 8.16:

Bo(t—1) = D ()P (x| S = g:)ap, (8.32)

A suitable final distribution 5.(r) = p, is chosen, e.g. p = 1 for the last
character only. The likelihood of observing the data x] and being in state ¢,
at time ¢ is then given by:

&) = ap(t) P(x] S = gp) Z apBr(t +1). (8.33)

Then the probabilities ~,(¢) of being in state ¢, at time ¢ are obtained by
normalization:

()
W = S

These probabilities are used as targets for the recurrent network outputs.
Figure 8.8a shows the initial estimate of the class probabilities for a sam-
ple of the word ‘&utfer. The probabilities shown are those estimated by the
forward-backward algorithm when using an untrained network, for which the
P(x:|S: = ¢,) will be independent of class. Despite the lack of information,
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the probability distributions can be seen to take reasonable shapes. The first
frame must belong to the first letter, and the last frame must belong to the
last letter, of course, but it can also be seen that half way through the word,
the most likely letters are those in the middle of the word. Several class
probabilities are non-zero at a time, reflecting the uncertainty caused since
the network is untrained. Nevertheless, this limited information is enough
to train a recurrent network, because as the network begins to approximate
these probabilities, the segmentations become more definite. In contrast,
using Viterbi segmentations with no duration model for an untrained net-
work, the most likely alignment can be very different from the true alignment
(figure 8.7b). The segmentation is very definite though, and the network is
trained towards the incorrect targets, reinforcing its error.

The process of training a network can be speeded up by enforcing a strong
duration model, as shown in figure 8.8b, which gives more pronounced peaks
in the probabilities for individual letters, because the duration model reduces
the uncertainty in their length and location. Figure 8.8 c,d shows the effect
that dividing by the class prior probability has on the segmentation. With no
duration model, the segmentation is distorted, but when the duration model
is imposed, the segmentation is better (stronger peaks, which overlap less)
than before dividing by the class prior.

@ R

ER) =5 ES) 5 Exs) E) =5 ES)

() (d)
Figure 8.8: Baum-Welch segmentations of the word ‘&utfer
with an untrained network. (a) is the segmentation using no
duration model, and a uniform class prior. (b) shows the effect
of adding an eight state gamma distribution duration model.

(c) shows the effect of dividing by the prior class probability
(equation 8.15). (d) shows the same with a duration model.

Finally, a trained network (especially when a strong durational model is
used) gives a much more rigid segmentation (figure 8.9 a,b), with most of
the probabilities being zero or one, but with a boundary of uncertainty at
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() (b)

Figure 8.9: Baum-Welch segmentations of the word ‘&utfor
using trained networks. (a) has the geometric duration model
and (b) has an eight-state gamma distribution duration model.

the transitions between letters. This uncertainty, where a frame might truly
represent parts of two letters, or a ligature between two, allows the net-
work trained with the forward-backward algorithm and tested using full for-
ward probabilities to give improved recognition results over a network using
Viterbi alignments and testing. The improvement is shown in table 8.5. The
final probabilistic segmentation can be stored with the frames of data in the
same way as the Viterbi segmentation was, and used when subsequent net-
works are trained on the same data. Training is then significantly quicker
than when training towards the approximate bootstrap segmentations.

Table 8.4 shows word recognition error rates for 80-unit networks trained
towards fixed Baum-Welch targets estimated by another network, and then
retrained, re-estimating the targets at each iteration. As with the corre-
sponding Viterbi alignments (figure 8.3) the retraining improves the recogni-
tion performance (7'(4) = 3.11,¢ 975(4) = 2.78).

Training Error (%)
method Jil o
Fixed targets | 16.9 | 0.75
Retraining 15.6 | 0.72

Table 8.4: Error rates for 5 networks with 80 units trained with
Baum-Welch alignments, then retrained using re-estimated
alignments.

Table 8.5 shows a comparison between the use of Viterbi and full prob-
ahilities when training and decoding. It can be seen that the error rates for
the networks trained with Baum-Welch targets are lower than those trained
on Viterbi targets (7'(2) = 5.24,¢975(2) = 4.30). As seen in table 8.1, the
error is lowest if the system is tested with Viterbi rather than full decod-
ing. For Baum-Welch targets, the difference is smaller but still significant
(T'(4) = 4.94,t 905(4) = 4.60).

Baum-Welch retraining is the standard method of retraining the discrete
Markov model, and the tables in section 7.3.3 refer to models retrained with
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Training Error (%)

method Viterbi decode | Full decode
i & i o

Viterbi 17.0 0.68 20.4 | 0.82

Baum-Welch | 15.4 0.74 15.6 | 0.72

Table 8.5: Error rates for networks with 80 units trained with
Viterbi (3 networks) or Baum-Welch (5 networks) alignments,
then tested using Viterbi or full probability decoding.

Baum-Welch. The network estimations used to prime the training are gen-
erally better than those of the discrete HMM, so only a small improvement
is seen by retraining.

8.4 Language modelling

I am not yet so lost in lexicography . ..
Samuel Johnson.

One area where great gains in recognition accuracy can be made is by language
modelling, as can be seen from the wealth of literature on this area from
the field of speech recognition (Waibel and Lee 1990:ch.8). The system as
described so far has a language model built in in the form of a fixed lexicon
which limits the search to a set £ of permitted words.

8.4.1 Vocabulary choice

The lexicon used so far was chosen to be the union vocabulary of the train-
ing, test and validation sets, so that any word in the corpus would be in the
lexicon. In practice, the lexicon size would be dictated by the task to be dealt
with. In an application such as reading cheques, the vocabulary size would be
around 35 words, comprising numbers, currency units, ‘and’ and so forth. On
the other hand, for transcribing longhand documents, the vocabulary would
need to be tens of thousands of words, to cover nearly all the words likely
to occur. The size of the vocabulary affects the performance of any recogni-
tion system because when it is large, words similar to the correct word are
more likely to be permitted. For instance, in a cheque application the word
‘hundred’ is unlike all the other words, but ‘hounded’ might be necessary in a
large vocabulary system, increasing the likelihood of confusion.

In postal applications, the potential vocabulary is large, containing all
street, city, county and country names, but a system might be required to
identify only the city or only the state name, these having been segmented
from the address block. The vocabulary is now much smaller, making the
task easier. In fact, the main reason for using cursive script in address read-
ing is to disambiguate confusions in reading the zip code. If the zip code
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is reliably read, the city will be known, but if one, two or three digits are
uncertain, the vocabulary will reflect this uncertainty and rise to ten, a hun-
dred or a thousand potential city names. (If the correspondence between
zip codes and cities is not one-to-one, the vocabulary size will vary, but this
is a rough guide.) Thus these are reasonable vocabulary sizes for testing a
postal system, with the vocabulary being dynamically chosen from a longer
list according to the cities matching the known digits of the zip code.

Lexicon | Error rate (%) | Time per
size {1 o word (s)
501 13.3| 0.72 0.22
1048 16.1| 0.73 0.33
2155 18.3| 0.73 0.61
4554 | 20.8| 0.72 1.27
9733 23.7 | 0.72 2.83

Table 8.6: Error rates from testing five 80-unit networks on lex-
ica of different sizes.

To test the effect on error rate that the lexicon size has, experiments have
been conducted with lexica containing different numbers of words. Table 8.6
and figure 8.12 show the results of these experiments. The lexica are created
by taking the vocabulary of the test-set (447) and adding to that the most
frequent words from the LOB corpus that were not already included. This
ensures that the correct word is always in the lexicon, but allows lexica from
447 to 10,000 words to be tested. In practice, the lexica were made from
approximately 500, 1000, 2000, 4000 and 8000 words, but including all words
sharing the lowest frequency needed to make up the total, meant that these
figures were exceeded in each case. This experiment corresponds to one done
by Schenkel et al. (1994) who similarly construct lexica including all the test-
set words. They make up the total with words chosen randomly from a large
dictionary which will tend to be longer, and thus less confusable than the
most frequent words. The 501 word error rate is lower than those quoted
before, because of the smaller lexicon size, but later lexica give more errors
because of the increase in similarity between the permitted words. Because
the most common words were added, and since these are the shorter words
which the system tends to confuse, the results are worse with this 1048 word
lexicon than with the usual 1334 word lexicon (15.6%).

8.4.2 Grammars

After considering the vocabulary of the system, the next level of complexity
in language modelling is to impose a grammar on the words, to limit which
words are permissible in a given context or to account for the frequencies
of different words. The simplest form is termed a ‘unigram’ grammar, and
simply involves determining the probability of a word occurring, and using

Off-line handwriting recognition 96



CHAPTER 8. HIDDEN MARKOV MODELLING

that as the P(W) term of equation 8.1. The probabilities are determined by
frequency counts in a corpus of data, for instance in the whole LOB corpus
(less the training set) or just on the training set. One problem with defin-
ing stochastic grammars is that words in the grammar may not occur in the
database available for training the grammar. Complex smoothing techniques
exist, but here the simple expedient of assigning a frequency count of one to
unobserved words is adopted.
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Figure 8.10: A mesh plot showing Figure 8.11: The corresponding con-
the effect on error rate of weight- tour plot, showing the minimum at
ing the language and duration model (3,2).

probabilities.

In practice, it has been found in speech recognition that weighting the
language model and the duration model with respect to the acoustic model
gives better recognition. This is equivalent to rewriting equation 8.14 as

LWIxy) = PW)* > P(xlS)P(S)". (8.34)
SesS(W)

Varying the weights « and ) affects the recognition rate, and is a method of
indicating the relative degree of confidence in the accuracy of the three prob-
ability estimates. Figures 8.10 and 8.11 show the variation in error rate when
testing a single network as the weights are altered, keeping the weighting of
the graphic data probability equal to one. The optimum values found are 3
for the language model weight, A and 2 for the duration model weight, «.
Much research has been done into using more complex language models
which use context to determine which words are possible in the next position
— such as word pair grammars which simply limit the vocabulary according
to the previous word — or higram grammars which assign a probability to
a word, conditioned on the previous word. By determining statistics on a
large corpus of text, the frequency of occurrence of pairs of words can be
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determined, giving the bigram grammar P(W,|W,_,). For pairs of words not
observed in the corpus, the unigram grammar must be used instead. More
context can be used, as in the general n-gram grammar P(W,|W,_1,..., W:_,),
and parsing sentences during recognition can give information about what
parts of speech are possible or likely in the next word. Kuhn and de Mori
(1990) describe a method of caching recently used words as these are more
likely in the following text, and Jelinek (1991) discusses other methods of
language modelling. The present system considers each word in isolation,
so none of these more complex schemes has been implemented, though they
would be appropriate for a system transcribing sentences. Cheque amounts
and postal addresses have a simple structure for which a restrictive grammar
can be written to significantly reduce the number of words that need to be
considered at the next stage.

Grammar Entropy | Perplexity
No grammar 10.38 1334
Grammar based on training set only 8.96 500
Grammar based on whole of LOB corpus 9.72 845

Table 8.7: Entropy and perplexity of grammars for the LOB cor-
pus.

All grammars are used to limit the choice of words, and so improve the
recognition rate. A crude method of quantifying how effective a grammar ¢
is, is to measure its perplexity Q(G) (Lee 1989:p.145). This is the average
over all words of the number of permitted successor words. For a unigram
grammar, this is simply two to the power of the entropy H(G) of the unigram
probability distribution, measured in bits:

H(G) = — 3 P(W)log, P(W) (8.35)
Q(G) = 2"9). (8.36)

Lee notes that this “does not reflect the uncertainty encountered when de-
coding.” If the grammar does not reflect the actual frequencies of the words
in the test set, then the perplexity is a poor guide to the grammar’s utility.
A better measure is the test set perplexity ()..«:(G) calculated from the cross
entropy of the test set, given the grammar (Charniak 1993:p.34):

Htest(g) = — Z Ptest(W) 10g2 P(W) (837)
wecl
Quest(G) = 2Mel9)] (8.38)

where P....(1V) is the proportion of the test set that word W represents, not
the unigram probability P(1V). (Where test set words are not in the lexicon,
as in section 8.4.4, P (W) is calculated as a proportion of the in-vocabulary
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Lexicon | Perplexity Error rate (%)
size No grammar | Unigram
1334 500 15.6 14.5
1334 845 15.6 15.6
501 742 13.3 13.8
1048 921 16.1 15.5
2155 1029 18.3 16.8
4554 1119 20.8 17.7
9733 1188 23.7 18.7

Table 8.8: Error rates from testing five 80-unit networks on lex-
ica of different sizes. The 1334 word lexicon is tested with the
training set grammar and the LOB corpus grammar.

words.) This perplexity measure indicates how useful the grammar is at lim-
iting the choice of words to those in the test set, which is the function that
the grammar should perform.

Sample test-set perplexities are seen in tables 8.7 and 8.8. The unigrams
for the lexica with lengths other than 1334 are estimated on the LOB cor-
pus excluding the test set. Because of the mismatch between the test set
distribution and the unigram probabilities, the perplexity for the 501 word
vocabulary is higher than the lexicon size, and the 1334 word grammar esti-
mated on the LOB corpus has a higher perplexity than that estimated on the
training set. The effect of using these grammars for recognition is shown in
table 8.8. It can be seen that using a grammar decreases the error rate in all
cases except with the 501 word lexicon when the perplexity of the grammar
is higher than the lexicon size (figures 8.12 and 8.13). The test set perplex-
ity can be seen to indicate the effectiveness of the grammar reasonably well.
This is highlighted in figure 8.14 where the recognition rate is seen to be pro-
portional to the log perplexity for each of the types of lexicon and grammar
used, though the slopes differ between the grammar types.

8.4.3 Experimental conditions

At this point, the whole of the standard test system has been described, and
it is now possible to summarize the conditions used for earlier experiments.
These conditions are used everywhere except as noted in individual experi-
ments. The typical conditions are as follows:

Normalization Slope correction; Srihari and BoZinovit's slant estimate; Zhang
and Suen’s thinning algorithm.

Representation Uniform horizontal quantization; 7 band vertical quantiza-
tion; skeleton coding at four angles; turn, endpoint, junction and dot
features; eleven snake features.
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Figure 8.12: A graph of error rates
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ties for the unigram grammars plot-
ted against lexicon size. The lexicon
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Figure 8.14: A graph of error rate against perplexity for lexica of
different lengths with and without use of the unigram grammar.
Figures for two different grammars are shown for the 1334 word
lexicon (based on the training set or LOB corpus).

Recognition Recurrent network; 80 feedback units; 26 softmax output units.

Training Back-propagation through time with the modified delta bar-delta
scheme; training towards fixed Baum-Welch targets until stopping cri-
terion; retraining towards re-estimated targets.

Testing 1334 word vocabulary; no unigram grammar; 8 state gamma distribu-
tion duration model; duration model weighting of 2; full forward proba-
bility calculation. Tests with a unigram grammar use the grammar based
on the training and validation sets, and a grammar weighting factor of 3.
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It will be noted that these conditions are not the optimal conditions found
so far. Improvements can be made by: using the Canny slant estimate; in-
creasing the number of feedback units; using the unigram grammar and using
non-uniform quantization. Subsequent experiments described in this chapter
use all of these enhancements, but the network size is limited to 160 feed-
back units — the largest network trained on the non-uniformly quantized
data set. Error rates for this network are shown in table 8.9.

Conditions Error rate (%)
Before retraining, no grammar, full decoding 11.6
After retraining, no grammar, full decoding 9.6
After retraining, perplexity 500 grammar, full decoding 9.2
After retraining, perplexity 500 grammar, Viterbi 8.8

Table 8.9: Error rates when testing a 160-unit network on the
1334 word vocabulary.

8.4.4 Coverage

In most applications, there is a chance that the recognizer will be asked to
identify a word that is not in the lexicon. A cheque amount could be filled in
incorrectly, or a large vocabulary system might be presented with a proper
name or neologism which would not be in the lexicon. Thus a system must
be able either to recognize words not in the vocabulary (the next section
describes one method of doing this), be condemned to incorrectly classify
these non-words or flag that there was an out-of-vocabulary word for human
proof-reading.

In the case where out-of-vocabulary words are not errors, and the system
should be able to classify them, the vocabulary is termed ‘open’, in contrast
to the ‘closed’ vocabulary task assumed above. For an open vocabulary task,
the issue of coverage must be addressed — the proportion of words in a text
which are in a recognizer’s lexicon. If there is no method of recognizing out-
of-vocabulary words, then this figure is an upper bound on the proportion of
words that the recognizer can classify correctly. Some sample coverages for
the LOB corpus with lexica of different sizes are shown in table 8.10. In each
case, the lexicon is made of the » most frequent words from the LOB corpus.
It should be noted that the coverage figures for the larger lexica are artificially
high because the lexica are derived from the corpus on which coverage is
assessed. On any other corpus, coverage would flatten off more for larger
lexica. The coverage proportions are compared with the performance of the
160-unit network of section 8.4.3.

These results are shown graphically in figure 8.15. It can be seen that, as
the lexicon size increases, the recognition rate increases, though it does not
rise as fast as the test set coverage rate which is the optimal performance.
As a measure of how well the system is performing compared to this upper
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Lexicon | Coverage (%) Error rate (%) Test-set | Decoding time
size n | LOB Test | Test set | In lexicon | perplexity | per word (s)
2|1 9.9 10.9 89.1 0.0 1.9 0.76
41 15.5 14.9 85.1 0.6 3.5 0.76
8121.9 22.1 78.6 3.6 7.2 0.77
16 | 28.4 28.7 73.7 8.6 12.6 0.77
32 | 36.5 36.1 66.5 7.4 22.0 0.78
064 | 44.6 43.7 59.8 8.1 37.2 0.80

125 | 51.8 51.9 53.2 10.0 61.9 0.85
250 | 58.6 58.3 47.5 10.1 94.8 0.96
500 | 65.4 66.8 39.8 9.9 156.6 1.19
1000 | 72.6 72.5 34.3 9.5 226.1 1.68
2000 | 79.7 81.0 27.4 10.3 369.7 2.70
4000 | 86.6 88.5 20.4 10.1 571.6 4.93
10000 | 93.8 94.1 16.0 10.9 822.8 11.8
20000 | 97.5 97.7 13.9 11.9 1048.2 23.9
30000 | 99.0 99.3 12.6 12.0 1179.4 36.8

Table 8.10: Coverage rates for lexica composed of the » most
frequent words from the LOB corpus, on the LOB corpus as a
whole, or on the LOB test set. The latter figure is the upper
bound on the number of words correct. Error rates are shown
as a percentage of words incorrect in the test set and as a per-
centage of the maximum potential words correct. Recognition
times per test word are shown.

bound, the in-lexicon error rate is also plotted. This is the proportion of in-
vocabulary words (which the system could have correctly identified with that
lexicon) which are misclassified. This rises from 0% with two words (all words
‘the’ and ‘of’ are correctly classified) to 12% with a 30,000 word vocabulary.

8.4.5 Search issues

In the system described here, which has not been optimized for speed, with
a large lexicon the majority of the recognition time is spent calculating the o
probabilities in the hidden Markov model rather than estimating the poste-
riors in the recurrent network. Since there is one model per word, the search
time increases linearly with the length of the lexicon (as can be seen in ta-
ble 8.10 where the recurrent network takes approximately 0.76s per word,
plus 107s per lexicon item). For a development system with a 1000 word
vocabulary this is tolerable, but for larger vocabularies there are a number
of strategies which must be implemented to increase the speed. None of
these has yet been implemented in the system, but all could be added sim-
ply. Patience was the only strategy adopted for the few large-vocabulary
tests described here.

Off-line handwriting recognition 102



CHAPTER 8. HIDDEN MARKOV MODELLING

g 100 10

= Coverage — Unigram
c — Error rate 4l --No grammar
8b 80 , 10°l

] -- In-lexicon errors

L >

= 3

> 60 =10

) <

I 2,

g 40 3 10

(o] o

s 1

'E 20 10

O

(&)

o

a 0% 10

5 0 5
10 10 10
Lexicon size (log scale)

=
o

Lexicon size (log scale)

Figure 8.15: A graph of test-set Figure 8.16: A graph of the test set
coverage rate for lexica of different perplexity of the unigram grammar
sizes. Recognition rates for a 160- for in-vocabulary words.

unit network are shown, and the

failure rate is also plotted. Failure

is the proportion of in-vocabulary

words that are wrongly classified.

The first saving, which does not affect the performance of the recognizer,
would be to organize the lexicon according to a tree structure. Since the
words ‘proud’ and ‘proof’ share the first three letters, the calculations for
these letters are being repeated. By storing the lexicon in a tree, this labour
can be saved, at the cost of a small organizational overhead (figure 8.17).

Further time savings can be introduced by pruning the search path. If a
state is found to be much less likely than the other states the search along
paths leading from that state is terminated. Similarly, only the n-best paths
at each time step need be retained, reducing the number of operations re-
quired. Renals and Hochberg (1994) have shown that the search can be very
effectively pruned by examining the posterior probabilities estimated by the
network.

Speed might also be improved by restricting the vocabulary using a simple,
crude recognition method. The method does not need to be very accurate if it
can reject a reasonable proportion of the vocabulary but rarely reject the cor-
rect word. Potential methods might include running a cut-down recognizer
with one-state-per-letter-models, or a technique as simple as considering
the height:width ratio of a word, or recognizing just the first letter with an
isolated character recognizer. After reducing the vocabulary with this simple
method, the full recognizer can be run with the smaller vocabulary. Systems
for on-line recognition already use this fast match approach (Schenkel et al.
1994).
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’ \\
’post)

proof‘

° proud\
Figure 8.17: Three words from a lexicon stored as a tree to re-
duce the calculation time in decoding.

8.5 Rejection

And none can read the text — not even I.
Merlin in Tennyson’s 1dylls of the King.

The results quoted so far have all been error rates, where each word is clas-
sified by the recognizer and, according to its label, determined to be correct
or incorrect. This is the performance measure which must be used for any
non-interactive text transcription system, for it is the number of errors that
is significant. For an application that allows some human intervention, how-
ever, a mechanism for rejection can be used. If a measure of confidence for
the system’s classifications can be formulated, then those words which are
classified with low confidence can be rejected. With a good measure of con-
fidence, many more incorrect words than correct words would be rejected,
so the proportion of accepted words which are correct would be higher than
the raw recognition rate. For a text transcription system, rejected words can
be highlighted in the transcription and the user prompted for correct classi-
fication, reducing the effort needed to proof-read and correct the transcribed
text. Similarly, in a post-office sorting situation, if those envelopes whose
addresses are classified with low confidence are rejected and manually sorted,
the number of machine sorted mail pieces incorrectly routed will be reduced.
Projects designed to tackle commercial problems have specified accuracy and
rejection goals that the classifiers must meet. Because recognition must be
good to make automation cost-effective, the accuracy figure is usually very
high, but, acknowledging the difficulty of handwriting recognition, the per-
mitted rejection rates are high (section 2.2.1).

Three rejection measures have been evaluated for this system, based on
the word likelihoods and posterior word probabilities for the most likely
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word, Wy, and the second most likely word, W,....q. In the decoder, the
likelihoods L(Whest|xg), L(Waecond|xd)and probabilities P(Whest|x), P(Wsecond|X3)
are already calculated, and it can be seen that if the graphic data matches a
word model very well, then P(W,..|x5) will be close to one and L(Whes|xj),

P(WhestIX5) L(Wyest [%3) : ;
(Al and YR j—el will all be high.

L(Whest|xg) is the product of a variable number of probabilities (depending
on the number of frames (7+1) in the word). To obtain a threshold applicable
to words of any length, the log likelihood is scaled to be independent of these
factors and the variable thresholded is the normalized likelihood L(Whes|x7):

tog L(Whasel) = B MbenbG), (5.39)
T+1
Alternative scaling factors have been tested, incorporating the weights « and
A, but this simple normalization was found to be most effective.

87\\ -- Likelihood difference
. - - Likelihood
7’ Do — Combined
bl >
3
N5)
= J <\;<7*>\\~
54/
= RS
3 S
2t \
1l R Nl litis
0 ‘ ‘ ‘ ‘ ‘
0 5 10 15 20 25

Percent rejected
Figure 8.18: Error against rejection proportion for thresholding
on normalized maximum log likelihood, difference in normalized
log likelihood and a combined scheme.

By varying a threshold on any of these dimensions, and rejecting words

. incorrect words accepted
which fall beyond the threshold, the error rate ( total words accepted ) and

rejection rate can be found. The error rate can be plotted against the re-
jection rate for a variety of threshold values, to show the trade-off between
rejection and accuracy. Figure 8.18 shows these curves when the threshold
is on the normalized log of the maximum likelihood, and on the difference
in normalized log of the best two words’ likelihoods. The likelihood differ-
ence method works better than the likelihood method, since the error rate
is lower for a given rejection rate. This graph also shows the performance
of a combined method which thresholds on a linear combination of the two
measures. Methods based on the posterior probability gave similar results
(understandably, since the posteriors are closely related to the likelihoods,
by equation 8.15). Using such a rejection criterion increases the accuracy of
the system, e.g. giving error rates as low as 1.2% when rejecting 20.8% of the
words, or 4.9% when rejecting 8.0%.
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8.6 Out-of-vocabulary word recognition

Words and wordlessness. Between the two....
Tony Harrison. Wordlists.

If the vocabulary is not inherently limited by the task (in which case an out
of vocabulary word is an error), the system should be able to detect that the
word is poorly recognized and, if possible, should then use an alternative
strategy to recognize the word.

Figure 8.19: A non-word Markov model showing some of the
26 letter models.

One such strategy is to create a non-word Markov model, as shown in
figure 8.19. Each circle represents a letter model, with one or more states.
The initial distribution = is uniform across the first states of each letter model.
The probabilities are combined to find the o/ probabilities as before, but after
each letter is complete, a transition to any of the letters is permitted. As the
data are accumulated, a path is traced between successive letters.

When the final frame is processed, the most likely path is found and the
letters corresponding to its state sequence can be printed out. Viterbi de-
coding is used, since finding the best sequence of letters when calculating full
probabilities is much more difficult than in the fixed-vocabulary task. Just as
with a word bigram, a letter bigram can be created detailing the probability of
making a transition from one letter to another, and these probabilities can be
multiplied into the state sequence probability. Table 8.11 shows the recogni-
tion rates for the non-word model when it is used instead of a lexicon. These
results compare favourably with the single-author non-word error rates of
78-92% of Edelman et al. (1990).

Decoding with the non-word model is faster than when using a lexicon.
(0.76s compared to 2.21s when using a 1334 word lexicon, both with the 160-
unit network.) The non-word model could be used as a fast alternative to the
lexicon-based decoder. It is possible to find the most likely letter sequence
by this method, and then, if a lexicon is available, the best in-lexicon match
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Bigram weight | Error rate (%)
0 60.3
1 53.9
2 54.2
3 55.1

Table 8.11: Error rates for the non-word model with different
weightings (with the duration model weight « = 3), using Viterbi
decoding.
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is determined by finding the word with the minimum edit distance from this
sequence.! Several of the closest words could be identified and used as the
vocabulary for a slower, more accurate recognition.

A system has been created which uses both the lexicon and the non-word
model, finding the most likely word in the lexicon and the most likely letter
string respectively. The problem then is to decide which of these hypotheses
to choose. It has already been seen that the normalized likelihood is a good
confidence measure for the classification of the lexicon-based system. A sim-
ilar measure can be defined for the non-word model, based on the likelihood
of the most likely state sequence, L(nonword|xj).

log (P(Wbest)AL(nonword |x6))

8.40
T+ 1 ( )

log L(nonword|x]) =

IThe edit distance is calculated by comparing the letter string with each lexicon word, and
penalties are accumulated for deletion, insertion and substitution of letters. This compari-
son is faster than calculation of the o probabilities for each word.
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Note that, to correct for the effect of the unigram grammar on L(Wie|x3), the
same prior, P(Wy.) must be included in the non-word normalization to make
the figures comparable. Now, plotting log L(nonword|x}) against log L(Whes|x7)
for each word (figure 8.21) shows that there is a clear boundary separating
the out-of-vocabulary words which the non-word model correctly identifies
from the in-vocabulary words which the lexical approach gets right but the
non-word model gets wrong. These are the two sets of words for which the
decision between methods is critical. Words for which both methods are right
or both are wrong can be ignored here as the choice between strategies does
not affect the accuracy of these classifications.

Since the two groups of words hardly overlap, a threshold P,,, can be
chosen to give a decision boundary on the line:

log L(nonword|x}) = log Poy + 108 L(Whest|x). (8.41)

Figure 8.20 shows one such boundary —log, P,,, = 2600. This threshold can
be interpreted as the log of the probability of transition into the non-word
model within a global model which encompasses the non-word model and
all the lexicon word models. In fact P, = 0.33. The base b of the logarithm
was chosen to permit numerically accurate calculations with the probabilities
stored as integers, if desired, so in fact b is little more than one.

Figure 8.21 shows the error rates when using this decision boundary. The
error rates are compared to the coverage and the error rate using only the
lexicon, as in figure 8.15. This time the recognition rate is higher than the
coverage for small lexica, showing the power of the non-word model for rec-
ognizing out-of-vocabulary words. With larger lexica, the recognition rate
falls below the coverage, but remains above the lexicon-only recognition rate.
Thus a non-word model always improves the recognition rate, though the ef-
fect is small when the lexicon is large.

8.7 Summary

This chapter has described the final stage in the process of recognizing hand-
written words: deriving word probabilities from the frame likelihoods of the
previous chapter. From the simple models with one state per letter, a num-
ber of enhancements have been described. By modelling the duration dis-
tributions of letters, the system accuracy has been improved. The problem
of vocabulary size has been addressed and its effect on the error rate shown,
for both closed and open vocabulary tasks. A simple unigram grammar has
been implemented, and it has been shown how this reduces the error rate. A
scheme for rejecting poorly recognized words has been described and a sys-
tem for recognizing words not in the lexicon implemented. Combining these
has given increased recognition on the open vocabulary task when many test
words are not in the lexicon.
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The most significant results from this chapter are the final error rates of
8.8% with a lexicon and grammar, 53.9% using no lexicon and 12% on the open

vocabulary task. Lower error rates can be achieved by applying a rejection
criterion.
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Chapter 9
Conclusions

I saw infinite processes that formed one single felicity and,
understanding all, I was able to understand the script of the tiger.
Jorge Luis Borges. The God’s Script.

This thesis has described a complete handwriting recognition system which
has been implemented and tested on a database of cursive script. The results
show that the method of recurrent error propagation networks can be applied
successfully to the task of off-line cursive script recognition and perform bet-
ter than a comparison hidden Markov model system. An 887% recognition rate
has been achieved on an open-vocabulary task. Comparison of results with
other researchers is difficult because of differences in experimental details,
the actual handwriting used and the method of data collection. The results
which have been published for similar problems are noted in section 2.3.2.
The single author recognition rates for other systems are (for various lexicon
sizes): 48% by BoZinovit and Srihari (1989), 50% by Edelman et al. (1990) and
70% by Yanikoglu and Sandon (1993).

The recognition performance of the system has been improved in a num-
ber of ways. The successive improvements are summarized in table 9.1. This
shows the relative reduction in error rate that each of the techniques has
brought about.

Enhancements in normalization and in the detection and representation
of features have led to reduced error rates. The hybrid system, which was
found to perform better than the discrete probability HMM system, was im-
proved by retraining with re-estimated frame labels. Baum-Welch retraining
of the recurrent network has been described here and has also brought about
an improvement in recognition rates compared to using Viterbi targets. Bet-
ter performance still can be hoped for from training larger networks, but the
training time is problematic for such large networks without specialist hard-
ware.

Language modelling has been found to improve the recognition perfor-
mance, both by incorporating a model of the duration of each letter, and by
adding a unigram word grammar. It has been shown that the system can
recognize 46% of words without restriction to a lexicon, and that a model
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Method Proportional error
rate reduction (%)
Skeleton vs. undersampling 36
Features 11
Non-uniform quantization 15
Snakes 14
Hybrid vs. discrete HMM 30
Baum-Welch vs. Viterbi targets 9
Retraining 9
Duration model 14
Unigram grammar 7

Table 9.1: The proportional reduction in error rate achieved by
the incorporation of the techniques described in previous chap-
ters. The discrete HMM is compared to a hybrid with the same
number of parameters.

for words not in the system’s vocabulary can increase the recognition rate
beyond that otherwise obtained.

The training time of the recurrent network has been investigated and has
been reduced by choosing an effective weight update scheme, by using soft-
max outputs, by specifying the training schedule and by initialization of the
weight matrix. Preliminary work to investigate the operation of the network
has been carried out, giving a greater understanding of the weights and feed-
back units. Much more could be done in this area with the hope of greater
understanding and improved performance.

9.1 Further work

In writing a complete handwriting recognition system, one must face the
problem of where effort can be most effectively applied to increase the per-
formance. It is felt that in this system, the effort has been evenly distributed,
but with a slight emphasis on the work described in chapter 8. In distributing
the effort, potential improvements in every aspect of the system have neces-
sarily been left without being investigated. As a result, further work could
be carried out, with reasonable hope of return, on any of the techniques that
have been described.

The preprocessing used could be improved upon, for example by extracting
a better skeleton from the raw image. Doermann (1993) tackles this partic-
ular problem with a model-based approach, and derives a representation of
the off-line strokes with inferred temporal information. His technique has
not yet been applied to a recognition task. Normalization of a skeleton in
the form derived by Doermann could be carried out using the procedures of
Singer and Tishby (1994) which use a model of handwriting production to
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guide normalization. The non-uniform quantization scheme could also be
made more stable, and the snake feature models could be extended as de-
scribed at the end of chapter 6.

This system has been tested on the problem of single-writer handwrit-
ing recognition, though the design has been made open to accepting any
style of handwriting, with normalization against scale, slope, slant and stroke
width. It is hoped that future work will include the incorporation of algo-
rithms which will allow the system to be tested on the CEDAR database.

The pure HMM system could be improved by experimenting with other
guantization schemes using alternative metrics or dividing the input space
into several spaces to be individually quantized. The HMM could also be
given a probability distribution for each state, instead of tying the distribu-
tions across all states representing the same letter. This would be simple
for the pure HMM, but might be computationally intensive for the hybrid
system. Context-dependent models might also be used.

Better recognition rates for the hybrid system could be expected from the
technique of connectionist model merging (Robinson et al. 1994). The im-
position of a more complex, task-dependent grammar which further restricts
the choice of words can also be expected to yield higher accuracy.
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